Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32708 by abdo imad last updated on 31/Mar/18

let give f(x)=∫_0 ^(π/2)  ((ln(1+xtant))/(tant))dt  find a simple form of f(x)  2)calculate ∫_0 ^(π/2)    ((ln(1+2tant))/(tant))dt .

letgivef(x)=0π2ln(1+xtant)tantdtfindasimpleformoff(x)2)calculate0π2ln(1+2tant)tantdt.

Commented by abdo imad last updated on 03/Apr/18

we have f^′ (x) = ∫_0 ^(π/2)   (∂/∂x)(  ((ln(1+xtant))/(tant)))dt  = ∫_0 ^(π/2)      ((tant)/((1+xtant)tant))dt = ∫_0 ^(π/2)     (dt/(1+xtant))  = ∫_0 ^(π/2)     (dt/(1+x((sint)/(cost)))) = ∫_0 ^(π/2)      ((cost)/(cost +xsint)) dt  .ch.tan((t/2))=u  give f^, (x) = ∫_0 ^1  (((1−u^2 )/(1+u^2 ))/(((1−u^2 )/(1+u^2 )) +x (((2u))/(1+u^2 )))) ((2du)/(1+u^2 ))  f^′ (x) =∫_0 ^1    ((2(1−u^2 ))/((1+u^2 )( 1−u^2  +2xu)))du  = ∫_0 ^1     ((2(u^2 −1))/((1+u^2 )(u^2  −2xu −1)))du let decompose  F(u) =  ((2(u^2 −1))/((1+u^2 )( u^2  −2xu −1)))  u^2  −2xu −1 ⇒Δ^′  =x^2  +1 ⇒ u_1 =x +(√(1+x^2 ))  u_2 = x−(√(1+x^2  ))    F(u) =  (a/(u−u_1 ))  +(b/(u−u_2 ))  + ((cu +d)/(u^2  +1)) =((2(u^2 −1))/((u −u_1 )(u−u_2 )(u^2  +1)))  a = ((2(u_1 ^2  −1))/((u_1  −u_2 )(u_1 ^2  +1))) = ((2( (x+(√(1+x^2 )))^2  −1))/(2(√(1+x^2 ( (x+(√(1+x^2 )))^2  +1)))))  b = ((2( u_2 ^2  −1))/((u_2  −u_1 )(u_2 ^2  +1))) =  ((2 ( (x−(√(1+x^2 )) )^2  −1))/(−2(√(2+x^2 ( ( x−(√(1+x^2 )^2  )) +1)))))   be continued....

wehavef(x)=0π2x(ln(1+xtant)tant)dt=0π2tant(1+xtant)tantdt=0π2dt1+xtant=0π2dt1+xsintcost=0π2costcost+xsintdt.ch.tan(t2)=ugivef,(x)=011u21+u21u21+u2+x(2u)1+u22du1+u2f(x)=012(1u2)(1+u2)(1u2+2xu)du=012(u21)(1+u2)(u22xu1)duletdecomposeF(u)=2(u21)(1+u2)(u22xu1)u22xu1Δ=x2+1u1=x+1+x2u2=x1+x2F(u)=auu1+buu2+cu+du2+1=2(u21)(uu1)(uu2)(u2+1)a=2(u121)(u1u2)(u12+1)=2((x+1+x2)21)21+x2((x+1+x2)2+1)b=2(u221)(u2u1)(u22+1)=2((x1+x2)21)22+x2((x1+x2)2+1)becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com