All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32708 by abdo imad last updated on 31/Mar/18
letgivef(x)=∫0π2ln(1+xtant)tantdtfindasimpleformoff(x)2)calculate∫0π2ln(1+2tant)tantdt.
Commented by abdo imad last updated on 03/Apr/18
wehavef′(x)=∫0π2∂∂x(ln(1+xtant)tant)dt=∫0π2tant(1+xtant)tantdt=∫0π2dt1+xtant=∫0π2dt1+xsintcost=∫0π2costcost+xsintdt.ch.tan(t2)=ugivef,(x)=∫011−u21+u21−u21+u2+x(2u)1+u22du1+u2f′(x)=∫012(1−u2)(1+u2)(1−u2+2xu)du=∫012(u2−1)(1+u2)(u2−2xu−1)duletdecomposeF(u)=2(u2−1)(1+u2)(u2−2xu−1)u2−2xu−1⇒Δ′=x2+1⇒u1=x+1+x2u2=x−1+x2F(u)=au−u1+bu−u2+cu+du2+1=2(u2−1)(u−u1)(u−u2)(u2+1)a=2(u12−1)(u1−u2)(u12+1)=2((x+1+x2)2−1)21+x2((x+1+x2)2+1)b=2(u22−1)(u2−u1)(u22+1)=2((x−1+x2)2−1)−22+x2((x−1+x2)2+1)becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com