Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 3273 by Yozzi last updated on 09/Dec/15

∗  ∗  ∗  ∗    One can only move to the  ∗  ∗  ∗  ∗    right or downwards on the  ∗  ∗  ∗  ∗    4 by 6 point lattice shown.  ∗  ∗  ∗  ∗    How many paths from ∗ to  ∗  ∗  ∗  ∗      ∗ are there?   ∗  ∗  ∗  ∗

$$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\:\:{One}\:{can}\:{only}\:{move}\:{to}\:{the} \\ $$$$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\:\:{right}\:{or}\:{downwards}\:{on}\:{the} \\ $$$$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\:\:\mathrm{4}\:{by}\:\mathrm{6}\:{point}\:{lattice}\:{shown}. \\ $$$$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\:\:{How}\:{many}\:{paths}\:{from}\:\ast\:{to} \\ $$$$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\:\:\:\:\ast\:{are}\:{there}?\: \\ $$$$\ast\:\:\ast\:\:\ast\:\:\ast \\ $$$$ \\ $$

Answered by Filup last updated on 09/Dec/15

Assume you move ∗    You must move:  Down 5 times  Right 3 times    You can move in any combination  just so long as all moves are made    ∴it is the permutation^5 P_3 =60

$$\mathrm{Assume}\:\mathrm{you}\:\mathrm{move}\:\ast \\ $$$$ \\ $$$$\mathrm{You}\:\mathrm{must}\:\mathrm{move}: \\ $$$$\mathrm{Down}\:\mathrm{5}\:\mathrm{times} \\ $$$$\mathrm{Right}\:\mathrm{3}\:\mathrm{times} \\ $$$$ \\ $$$$\mathrm{You}\:\mathrm{can}\:\mathrm{move}\:\mathrm{in}\:\mathrm{any}\:{combination} \\ $$$$\mathrm{just}\:\mathrm{so}\:\mathrm{long}\:\mathrm{as}\:\mathrm{all}\:\mathrm{moves}\:\mathrm{are}\:\mathrm{made} \\ $$$$ \\ $$$$\therefore\mathrm{it}\:\mathrm{is}\:\mathrm{the}\:\mathrm{permutation}\:^{\mathrm{5}} \mathrm{P}_{\mathrm{3}} =\mathrm{60} \\ $$

Commented by Filup last updated on 09/Dec/15

I hope this is correct!

$$\mathrm{I}\:\mathrm{hope}\:\mathrm{this}\:\mathrm{is}\:\mathrm{correct}! \\ $$

Answered by prakash jain last updated on 09/Dec/15

x_1 d_1 x_2 d_2 x_3 d_3 x_4 d_4 x_5 d_5 x_6   x needs to be filled with r_1 r_2 r_3   r_1 r_2 r_3  together    6 choices  r_1 r_2  and r_3         5+4+3+2+1=15       (r_1 r_2  at x_1  leaves 5 possibilities for r_3 )  r_1  and r_2 r_3         5+4+3+2+1=15        (same as above)  r_1 r_2 r_3   r_1  at x_1              x_1 x_2 x_3   x_1 x_2 x_4   x_1 x_2 x_5   x_1 x_2 x_6                                x_1 x_3 x_4    x_1 x_3 x_5   x_1 x_3 x_6                                x_1 x_4 x_5    x_1 x_5 x_6                                x_1 x_5 x_6 =4+3+2+1=10  similarly r_1  taking x_2  will give (3+2+1)=6  similarly r_1  taking x_3  will give (2+1)=3  similarly r_1  taking x_4  will give (1)=1  total=6+15+15+10+6+3+1=56

$${x}_{\mathrm{1}} {d}_{\mathrm{1}} {x}_{\mathrm{2}} {d}_{\mathrm{2}} {x}_{\mathrm{3}} {d}_{\mathrm{3}} {x}_{\mathrm{4}} {d}_{\mathrm{4}} {x}_{\mathrm{5}} {d}_{\mathrm{5}} {x}_{\mathrm{6}} \\ $$$${x}\:{needs}\:{to}\:{be}\:{filled}\:{with}\:{r}_{\mathrm{1}} {r}_{\mathrm{2}} {r}_{\mathrm{3}} \\ $$$${r}_{\mathrm{1}} {r}_{\mathrm{2}} {r}_{\mathrm{3}} \:{together}\:\:\:\:\mathrm{6}\:{choices} \\ $$$${r}_{\mathrm{1}} {r}_{\mathrm{2}} \:{and}\:{r}_{\mathrm{3}} \:\:\:\:\:\:\:\:\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{1}=\mathrm{15} \\ $$$$\:\:\:\:\:\left({r}_{\mathrm{1}} {r}_{\mathrm{2}} \:\mathrm{at}\:{x}_{\mathrm{1}} \:\mathrm{leaves}\:\mathrm{5}\:\mathrm{possibilities}\:\mathrm{for}\:{r}_{\mathrm{3}} \right) \\ $$$${r}_{\mathrm{1}} \:{and}\:{r}_{\mathrm{2}} {r}_{\mathrm{3}} \:\:\:\:\:\:\:\:\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{1}=\mathrm{15} \\ $$$$\:\:\:\:\:\:\left({same}\:{as}\:{above}\right) \\ $$$${r}_{\mathrm{1}} {r}_{\mathrm{2}} {r}_{\mathrm{3}} \\ $$$${r}_{\mathrm{1}} \:{at}\:{x}_{\mathrm{1}} \:\:\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{3}} \:\:{x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{4}} \:\:{x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{5}} \:\:{x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{1}} {x}_{\mathrm{3}} {x}_{\mathrm{4}} \:\:\:{x}_{\mathrm{1}} {x}_{\mathrm{3}} {x}_{\mathrm{5}} \:\:{x}_{\mathrm{1}} {x}_{\mathrm{3}} {x}_{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{1}} {x}_{\mathrm{4}} {x}_{\mathrm{5}} \:\:\:{x}_{\mathrm{1}} {x}_{\mathrm{5}} {x}_{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{1}} {x}_{\mathrm{5}} {x}_{\mathrm{6}} =\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{1}=\mathrm{10} \\ $$$${similarly}\:{r}_{\mathrm{1}} \:{taking}\:{x}_{\mathrm{2}} \:{will}\:{give}\:\left(\mathrm{3}+\mathrm{2}+\mathrm{1}\right)=\mathrm{6} \\ $$$${similarly}\:{r}_{\mathrm{1}} \:{taking}\:{x}_{\mathrm{3}} \:{will}\:{give}\:\left(\mathrm{2}+\mathrm{1}\right)=\mathrm{3} \\ $$$${similarly}\:{r}_{\mathrm{1}} \:{taking}\:{x}_{\mathrm{4}} \:{will}\:{give}\:\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${total}=\mathrm{6}+\mathrm{15}+\mathrm{15}+\mathrm{10}+\mathrm{6}+\mathrm{3}+\mathrm{1}=\mathrm{56} \\ $$

Commented by prakash jain last updated on 09/Dec/15

Answer in factorials   csse 1:^6 P_1    (3r together)=6   case 2:^6 P_2   (r 2r 2 slots to be filled in 6)=30    case 3: ((P_3 )/(3!)) (r r r 3 slots to be filled. 3 duplicates)=20

$$\mathrm{Answer}\:\mathrm{in}\:\mathrm{factorials} \\ $$$$\:\mathrm{csse}\:\mathrm{1}:\:^{\mathrm{6}} {P}_{\mathrm{1}} \:\:\:\left(\mathrm{3r}\:\mathrm{together}\right)=\mathrm{6} \\ $$$$\:\mathrm{case}\:\mathrm{2}:\:^{\mathrm{6}} {P}_{\mathrm{2}} \:\:\left({r}\:\mathrm{2}{r}\:\mathrm{2}\:{slots}\:{to}\:{be}\:{filled}\:{in}\:\mathrm{6}\right)=\mathrm{30} \\ $$$$\:\:\mathrm{case}\:\mathrm{3}:\:\frac{{P}_{\mathrm{3}} }{\mathrm{3}!}\:\left({r}\:{r}\:{r}\:\mathrm{3}\:{slots}\:{to}\:{be}\:{filled}.\:\mathrm{3}\:{duplicates}\right)=\mathrm{20} \\ $$

Commented by prakash jain last updated on 11/Dec/15

You can also solve this problem with  combination formula.  8 steps need to be taken  SSSSSSSS   (5D, 3R)  The problem is choosing 3 steps among  8 where R will be placed remaining  position will have D.  total number of ways=^8 C_3 =56

$$\mathrm{You}\:\mathrm{can}\:\mathrm{also}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{problem}\:\mathrm{with} \\ $$$$\mathrm{combination}\:\mathrm{formula}. \\ $$$$\mathrm{8}\:\mathrm{steps}\:\mathrm{need}\:\mathrm{to}\:\mathrm{be}\:\mathrm{taken} \\ $$$$\mathrm{SSSSSSSS}\:\:\:\left(\mathrm{5D},\:\mathrm{3R}\right) \\ $$$$\mathrm{The}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{choosing}\:\mathrm{3}\:\mathrm{steps}\:\mathrm{among} \\ $$$$\mathrm{8}\:\mathrm{where}\:\mathrm{R}\:\mathrm{will}\:\mathrm{be}\:\mathrm{placed}\:\mathrm{remaining} \\ $$$$\mathrm{position}\:\mathrm{will}\:\mathrm{have}\:\mathrm{D}. \\ $$$$\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}=\:^{\mathrm{8}} {C}_{\mathrm{3}} =\mathrm{56} \\ $$

Answered by Rasheed Soomro last updated on 09/Dec/15

Total positions 24.Let every position  be specified  by coordinates as below:  00  10  20  30  01  11  21  31  02  12  22  32  03  13  23  33  04  14  24  34  05  15  25  35  From 00   3+5=8 moves  are possible  From mn

$$\mathcal{T}{otal}\:{positions}\:\mathrm{24}.\mathcal{L}{et}\:{every}\:{position} \\ $$$${be}\:{specified}\:\:{by}\:{coordinates}\:{as}\:{below}: \\ $$$$\mathrm{00}\:\:\mathrm{10}\:\:\mathrm{20}\:\:\mathrm{30} \\ $$$$\mathrm{01}\:\:\mathrm{11}\:\:\mathrm{21}\:\:\mathrm{31} \\ $$$$\mathrm{02}\:\:\mathrm{12}\:\:\mathrm{22}\:\:\mathrm{32} \\ $$$$\mathrm{03}\:\:\mathrm{13}\:\:\mathrm{23}\:\:\mathrm{33} \\ $$$$\mathrm{04}\:\:\mathrm{14}\:\:\mathrm{24}\:\:\mathrm{34} \\ $$$$\mathrm{05}\:\:\mathrm{15}\:\:\mathrm{25}\:\:\mathrm{35} \\ $$$$\mathcal{F}{rom}\:\mathrm{00}\:\:\:\mathrm{3}+\mathrm{5}=\mathrm{8}\:{moves}\:\:{are}\:{possible} \\ $$$$\mathcal{F}{rom}\:{mn}\:\: \\ $$

Commented by prakash jain last updated on 09/Dec/15

Consider this  3r+5d  1d+3r+4d  2d+3r+3d  3d+3r+2d  4d+3r+d  4d+r  2r+5d+r  2r+4d+r+d  2r+3d+r+2d  2r+2d+r+3d  2r+d+r+4d  and so on.

$$\mathrm{Consider}\:\mathrm{this} \\ $$$$\mathrm{3r}+\mathrm{5d} \\ $$$$\mathrm{1d}+\mathrm{3r}+\mathrm{4d} \\ $$$$\mathrm{2d}+\mathrm{3r}+\mathrm{3d} \\ $$$$\mathrm{3d}+\mathrm{3r}+\mathrm{2d} \\ $$$$\mathrm{4d}+\mathrm{3r}+\mathrm{d} \\ $$$$\mathrm{4d}+\mathrm{r} \\ $$$$\mathrm{2r}+\mathrm{5d}+\mathrm{r} \\ $$$$\mathrm{2r}+\mathrm{4d}+\mathrm{r}+\mathrm{d} \\ $$$$\mathrm{2r}+\mathrm{3d}+\mathrm{r}+\mathrm{2d} \\ $$$$\mathrm{2r}+\mathrm{2d}+\mathrm{r}+\mathrm{3d} \\ $$$$\mathrm{2r}+\mathrm{d}+\mathrm{r}+\mathrm{4d} \\ $$$$\mathrm{and}\:\mathrm{so}\:\mathrm{on}. \\ $$

Commented by Rasheed Soomro last updated on 09/Dec/15

Th^α nK^S .

$$\mathcal{T}{h}^{\alpha} {n}\mathcal{K}^{\mathcal{S}} . \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com