Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32737 by caravan msup abdo. last updated on 01/Apr/18

let give 0≤x≤1  calculate  ∫_0 ^∞ ((arctan((x/t)))/(1+t^2 )) dt

letgive0x1calculate0arctan(xt)1+t2dt

Answered by hknkrc46 last updated on 09/Apr/18

t=xcotu⇒dt=−xcsc^2 udu ∧ (t→0⇒u→(π/2) ∧ t→∞⇒u→0)  ∫_(π/2) ^0 ((−uxcsc^2 u)/(1+x^2 cot^2 u))du=∫_(π/2) ^0 ((−ux)/(sin^2 u+x^2 cos^2 u))du=∫_(π/2) ^0 ((−ux)/((1−cos2u+x^2 (1+cos2u))/2))du  ∫_(π/2) ^0 ((−2ux)/((x^2 −1)cos2u+x^2 +1))du=((−2x)/(x^2 −1))∫_(π/2) ^0 (u/(cos2u+((x^2 +1)/(x^2 −1))))du  =((−2x)/(x^2 −1))∫_(π/2) ^0 (u/(2cos^2 u+(2/(x^2 −1))))du=((−x)/(x^2 −1))∫_(π/2) ^0 (u/((1/(x^2 −1))+cos^2 u))du  I DO NOT KNOW  :(

t=xcotudt=xcsc2udu(t0uπ2tu0)π20uxcsc2u1+x2cot2udu=π20uxsin2u+x2cos2udu=π20ux1cos2u+x2(1+cos2u)2duπ202ux(x21)cos2u+x2+1du=2xx21π20ucos2u+x2+1x21du=2xx21π20u2cos2u+2x21du=xx21π20u1x21+cos2uduIDONOTKNOW:(

Terms of Service

Privacy Policy

Contact: info@tinkutara.com