Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 32914 by mondodotto@gmail.com last updated on 06/Apr/18

Commented by mrW2 last updated on 06/Apr/18

(b)  ∫((sin x+cos x)/(cos x−sin x)) dx  =−∫((cos x+sin x)/(sin x−cos x)) dx  =−∫(1/(sin x−cos x)) d(sin x−cos x)  =−ln ∣sin x−cos x∣+C

(b)sinx+cosxcosxsinxdx=cosx+sinxsinxcosxdx=1sinxcosxd(sinxcosx)=lnsinxcosx+C

Commented by prof Abdo imad last updated on 06/Apr/18

a) let use the changement x=5sht  I= ∫5 cht .5cht dt = 25 ∫ ch^2 t dt  =((25)/2)∫( 1+ch(2t))dt  = ((25t)/2) + ((25)/2) ∫ ch(2t)dt  =((25)/2)t  + ((25)/4) sh(2t) +λ  but t=argsh((x/5))  =ln((x/5) +(√(1+((x/5))^2 )) )  sh(2t) =2 sh(t)ch(t)  =2(x/5)(√(1+((x/5))^2 ))  ⇒  I = ((25)/2)ln((x/5) +(√(1+(x^2 /(25)))) ) +(5/2) x(√(1 +(x^2 /(25))))  +λ .

a)letusethechangementx=5shtI=5cht.5chtdt=25ch2tdt=252(1+ch(2t))dt=25t2+252ch(2t)dt=252t+254sh(2t)+λbutt=argsh(x5)=ln(x5+1+(x5)2)sh(2t)=2sh(t)ch(t)=2x51+(x5)2I=252ln(x5+1+x225)+52x1+x225+λ.

Commented by mondodotto@gmail.com last updated on 06/Apr/18

thanx

thanx

Commented by prof Abdo imad last updated on 07/Apr/18

c) let put I = ∫   (dx/(2x^2  +x−3))  roots of 2x^2  +x−3 ⇒Δ=1−4(2)(−3)=25  x_1  =((−1 +5)/4) =1  and  x_2 =((−1−5)/2) =−3 so  F(x)= (1/(2x^2 +x−3)) = (1/(2(x−1)(x+3)))  = (a/(x−1)) +(b/(x+3))  a= lim_(x→1) (x−1)F(x)= (1/8)  b=lim_(x→−3) (x+3)F(x) =−(1/8) ⇒  F(x)= (1/(8(x−1))) −(1/(8(x+3)))  I = (1/8) ∫( (1/(x−1)) −(1/(x+3))) dx +λ  I = (1/8)ln∣((x−1)/(x+3))∣ +λ .

c)letputI=dx2x2+x3rootsof2x2+x3Δ=14(2)(3)=25x1=1+54=1andx2=152=3soF(x)=12x2+x3=12(x1)(x+3)=ax1+bx+3a=limx1(x1)F(x)=18b=limx3(x+3)F(x)=18F(x)=18(x1)18(x+3)I=18(1x11x+3)dx+λI=18lnx1x+3+λ.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com