Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32939 by abdo imad last updated on 06/Apr/18

1) study the convergence of ∫_0 ^1   (x^p /(1+x)) dx  2) find lim_(p→∞)  ∫_0 ^1   (x^p /(1+x))dx .

1)studytheconvergenceof01xp1+xdx2)findlimp01xp1+xdx.

Commented by abdo imad last updated on 08/Apr/18

let put I =∫_0 ^1    (x^p /(1+x))dx .ch.x=(1/t) give  I = ∫_1 ^(+∞)      (1/(t^p (1+(1/t)))) (dt/t^2 ) = ∫_1 ^(+∞)     (dt/(t^(p+2)  +t^(p+1) ))  = ∫_1 ^(+∞)     (dt/(t^(p+2) ( 1+(1/t))))  .and at V(∞)  (1/(t^(p+2) (1+(1/t))))∼  (1/t^(p+2) )  ∫_1 ^(+∞)   (dt/t^(p+2) ) converges ⇔ p+2>1 ⇔p >−1 .so  I converges ⇔ p>−1 .  2) ∀ x∈[0,1]  (x^p /(1+x)) ≤ x^p  ⇒  ∫_0 ^1   (x^p /(1+x)) dx ≤  ∫_0 ^1  x^p dx=(1/(p+1)) ⇒  lim_(p→∞)  ∫_0 ^1    (x^p /(1+x)) dx =0 .

letputI=01xp1+xdx.ch.x=1tgiveI=1+1tp(1+1t)dtt2=1+dttp+2+tp+1=1+dttp+2(1+1t).andatV()1tp+2(1+1t)1tp+21+dttp+2convergesp+2>1p>1.soIconvergesp>1.2)x[0,1]xp1+xxp01xp1+xdx01xpdx=1p+1limp01xp1+xdx=0.

Answered by JDamian last updated on 08/Apr/18

  1) (x^p /(1+x))=x^(p−1) −x^(p−2) + ∙∙∙ (−1)^(p+1) +(((−1)^p )/(x+1))=Σ_(k=0) ^(p−1) (−1)^(p+k+1) x^k   ∫_0 ^1 (x^p /(1+x))=[(x^p /p)−(x^(p−1) /(p−1))+ ∙∙∙ +(−1)^(p+1) +(−1)^p ln∣x+1∣]_0 ^1 =  =[Σ_(k=1) ^p (−1)^(p+k)  (x^k /k)  +  (−1)^p ln∣x+1∣]_0 ^1 =Σ_(k=1) ^p  (((−1)^(p+k)  )/k)  +  (−1)^p ln2=  =(1/p)−(1/(p−1))+ ∙∙∙ +(−1)^(p+1)   +  (−1)^p ln2

1)xp1+x=xp1xp2+(1)p+1+(1)px+1=p1k=0(1)p+k+1xk01xp1+x=[xppxp1p1++(1)p+1+(1)plnx+1]01==[pk=1(1)p+kxkk+(1)plnx+1]01=pk=1(1)p+kk+(1)pln2==1p1p1++(1)p+1+(1)pln2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com