All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32939 by abdo imad last updated on 06/Apr/18
1)studytheconvergenceof∫01xp1+xdx2)findlimp→∞∫01xp1+xdx.
Commented by abdo imad last updated on 08/Apr/18
letputI=∫01xp1+xdx.ch.x=1tgiveI=∫1+∞1tp(1+1t)dtt2=∫1+∞dttp+2+tp+1=∫1+∞dttp+2(1+1t).andatV(∞)1tp+2(1+1t)∼1tp+2∫1+∞dttp+2converges⇔p+2>1⇔p>−1.soIconverges⇔p>−1.2)∀x∈[0,1]xp1+x⩽xp⇒∫01xp1+xdx⩽∫01xpdx=1p+1⇒limp→∞∫01xp1+xdx=0.
Answered by JDamian last updated on 08/Apr/18
1)xp1+x=xp−1−xp−2+⋅⋅⋅(−1)p+1+(−1)px+1=∑p−1k=0(−1)p+k+1xk∫01xp1+x=[xpp−xp−1p−1+⋅⋅⋅+(−1)p+1+(−1)pln∣x+1∣]01==[∑pk=1(−1)p+kxkk+(−1)pln∣x+1∣]01=∑pk=1(−1)p+kk+(−1)pln2==1p−1p−1+⋅⋅⋅+(−1)p+1+(−1)pln2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com