Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 3296 by prakash jain last updated on 09/Dec/15

If n,p,q∈Z^+  and p and q are coprimes,  then prove that HCF of (n^p −1) and (n^q −1) is (n−1).  Assume n>1.

$$\mathrm{If}\:{n},{p},{q}\in\mathbb{Z}^{+} \:\mathrm{and}\:{p}\:\mathrm{and}\:{q}\:\mathrm{are}\:\mathrm{coprimes}, \\ $$ $$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{HCF}\:\mathrm{of}\:\left({n}^{{p}} −\mathrm{1}\right)\:\mathrm{and}\:\left({n}^{{q}} −\mathrm{1}\right)\:\mathrm{is}\:\left({n}−\mathrm{1}\right). \\ $$ $$\mathrm{Assume}\:{n}>\mathrm{1}. \\ $$

Commented byRasheed Soomro last updated on 10/Dec/15

This means   ((n^p −1)/(n−1))  and   ((n^q −1)/(n−1)) are coprime.  I−E    If  any   d ∣ ((n^p −1)/(n−1)) then d ∤ ((n^q −1)/(n−1))       d>1

$$\mathcal{T}{his}\:{means}\:\:\:\frac{{n}^{{p}} −\mathrm{1}}{{n}−\mathrm{1}}\:\:{and}\:\:\:\frac{{n}^{{q}} −\mathrm{1}}{{n}−\mathrm{1}}\:{are}\:{coprime}. \\ $$ $${I}−{E}\:\:\:\:{If}\:\:{any}\:\:\:{d}\:\mid\:\frac{{n}^{{p}} −\mathrm{1}}{{n}−\mathrm{1}}\:{then}\:{d}\:\nmid\:\frac{{n}^{{q}} −\mathrm{1}}{{n}−\mathrm{1}}\:\:\:\:\:\:\:{d}>\mathrm{1} \\ $$

Commented byprakash jain last updated on 10/Dec/15

Yes.

$$\mathrm{Yes}. \\ $$

Commented byRasheed Soomro last updated on 10/Dec/15

Easily can be shown that  (n−1)∣ (n^p −1)   ∧   (n−1)∣ (n^q −1)  i e n−1 is a common divisor.  Now we have to prove that any number greater than  n−1 can′t divide both.  Let k > 0  and k∈N ⇒n+k−1>n−1  We have to prove:        n^p −1≇0 (mod n+k−1) ∧ n^p −1≇0 (mod n+k−1)  ∵ k∈ N   therfore perhsps mathematical induction   could help.

$$\mathcal{E}{asily}\:{can}\:{be}\:{shown}\:{that} \\ $$ $$\left({n}−\mathrm{1}\right)\mid\:\left({n}^{{p}} −\mathrm{1}\right)\:\:\:\wedge\:\:\:\left({n}−\mathrm{1}\right)\mid\:\left({n}^{{q}} −\mathrm{1}\right) \\ $$ $${i}\:{e}\:{n}−\mathrm{1}\:{is}\:{a}\:{common}\:{divisor}. \\ $$ $$\mathcal{N}{ow}\:{we}\:{have}\:{to}\:{prove}\:{that}\:{any}\:{number}\:{greater}\:{than} \\ $$ $${n}−\mathrm{1}\:{can}'{t}\:{divide}\:{both}. \\ $$ $${Let}\:{k}\:>\:\mathrm{0}\:\:{and}\:{k}\in\mathbb{N}\:\Rightarrow{n}+{k}−\mathrm{1}>{n}−\mathrm{1} \\ $$ $${We}\:{have}\:{to}\:{prove}: \\ $$ $$\:\:\:\:\:\:{n}^{{p}} −\mathrm{1}\ncong\mathrm{0}\:\left({mod}\:{n}+{k}−\mathrm{1}\right)\:\wedge\:{n}^{{p}} −\mathrm{1}\ncong\mathrm{0}\:\left({mod}\:{n}+{k}−\mathrm{1}\right) \\ $$ $$\because\:{k}\in\:\mathbb{N}\:\:\:{therfore}\:{perhsps}\:{mathematical}\:{induction}\: \\ $$ $${could}\:{help}. \\ $$

Answered by prakash jain last updated on 11/Dec/15

After removing common factor (n−1).  A=Σ_(j=1) ^p n^(j−1) , B=Σ_(j=1) ^q n^(j−1)   Let us say d>1 is common factor in A and B.  clearly d ∤ n since in that (A/d)∈N will imply  (1/d)∈N.    let us assume p>q.  since d divides B=Σ_(j=1) ^q n^(j−1)  there exists k≤q  such that d divides Σ_(j=1) ^k n^(j−1) , let us smallest  value of k for which d divides Σ_(j=1) ^k n^(j−1)  is i.  Clearly i>1.    if q=mi+r, r<i  B=Σ_(j=1) ^(mi+r) n^(j−1) =Σ_(x=0) ^(m−1) n^(xi)  [Σ_(j=1) ^i n^(j−1) ]+n^(mi) Σ_(j=1) ^r n^(j−1)   if d divides B then d divides n^(mi) Σ_(j=1) ^r n^(j−1)  since  d∤n^(mi)  ⇒ d divides Σ_(j=1) ^r n^(j−1)      Sincd r<i, it contradicts  that  i is the smallest value for k  where Σ_(j=1) ^k n^(j−1)   is divisible by d. So r must be equal to 0.  ⇒q=mi    similarly p=ki  So i>1 is common factor between q and p.  contradicts p and q are coprime.  hence no common factor between A and B.

$$\mathrm{After}\:\mathrm{removing}\:\mathrm{common}\:\mathrm{factor}\:\left({n}−\mathrm{1}\right). \\ $$ $${A}=\underset{{j}=\mathrm{1}} {\overset{{p}} {\sum}}{n}^{{j}−\mathrm{1}} ,\:{B}=\underset{{j}=\mathrm{1}} {\overset{{q}} {\sum}}{n}^{{j}−\mathrm{1}} \\ $$ $$\mathrm{Let}\:\mathrm{us}\:\mathrm{say}\:{d}>\mathrm{1}\:\mathrm{is}\:\mathrm{common}\:\mathrm{factor}\:\mathrm{in}\:{A}\:{and}\:{B}. \\ $$ $$\mathrm{clearly}\:{d}\:\nmid\:{n}\:\mathrm{since}\:\mathrm{in}\:\mathrm{that}\:\frac{{A}}{{d}}\in\mathbb{N}\:\mathrm{will}\:\mathrm{imply} \\ $$ $$\frac{\mathrm{1}}{{d}}\in\mathbb{N}. \\ $$ $$ \\ $$ $${let}\:{us}\:{assume}\:{p}>{q}. \\ $$ $${since}\:{d}\:\mathrm{divides}\:{B}=\underset{{j}=\mathrm{1}} {\overset{{q}} {\sum}}{n}^{{j}−\mathrm{1}} \:\mathrm{there}\:\mathrm{exists}\:{k}\leqslant{q} \\ $$ $$\mathrm{such}\:\mathrm{that}\:{d}\:\mathrm{divides}\:\underset{{j}=\mathrm{1}} {\overset{{k}} {\sum}}{n}^{{j}−\mathrm{1}} ,\:\mathrm{let}\:\mathrm{us}\:\mathrm{smallest} \\ $$ $$\mathrm{value}\:\mathrm{of}\:{k}\:\mathrm{for}\:\mathrm{which}\:{d}\:\mathrm{divides}\:\underset{{j}=\mathrm{1}} {\overset{{k}} {\sum}}{n}^{{j}−\mathrm{1}} \:\mathrm{is}\:{i}. \\ $$ $$\mathrm{Clearly}\:{i}>\mathrm{1}. \\ $$ $$ \\ $$ $${if}\:{q}={mi}+{r},\:{r}<{i} \\ $$ $${B}=\underset{{j}=\mathrm{1}} {\overset{{mi}+{r}} {\sum}}{n}^{{j}−\mathrm{1}} =\underset{{x}=\mathrm{0}} {\overset{{m}−\mathrm{1}} {\sum}}{n}^{{xi}} \:\left[\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}{n}^{{j}−\mathrm{1}} \right]+{n}^{{mi}} \underset{{j}=\mathrm{1}} {\overset{{r}} {\sum}}{n}^{{j}−\mathrm{1}} \\ $$ $${if}\:{d}\:{divides}\:{B}\:\mathrm{then}\:{d}\:{divides}\:{n}^{{mi}} \underset{{j}=\mathrm{1}} {\overset{{r}} {\sum}}{n}^{{j}−\mathrm{1}} \:{since} \\ $$ $${d}\nmid{n}^{{mi}} \:\Rightarrow\:{d}\:{divides}\:\underset{{j}=\mathrm{1}} {\overset{{r}} {\sum}}{n}^{{j}−\mathrm{1}} \: \\ $$ $$ \\ $$ $$\mathrm{Sincd}\:{r}<{i},\:\mathrm{it}\:\mathrm{contradicts}\:\:\mathrm{that} \\ $$ $${i}\:\mathrm{is}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{value}\:\mathrm{for}\:{k}\:\:\mathrm{where}\:\underset{{j}=\mathrm{1}} {\overset{{k}} {\sum}}{n}^{{j}−\mathrm{1}} \\ $$ $$\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:{d}.\:\mathrm{So}\:{r}\:\mathrm{must}\:\mathrm{be}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{0}. \\ $$ $$\Rightarrow{q}={mi} \\ $$ $$ \\ $$ $${similarly}\:{p}={ki} \\ $$ $$\mathrm{So}\:{i}>\mathrm{1}\:\mathrm{is}\:\mathrm{common}\:\mathrm{factor}\:\mathrm{between}\:{q}\:\mathrm{and}\:{p}. \\ $$ $${contradicts}\:{p}\:{and}\:{q}\:\mathrm{are}\:\mathrm{coprime}. \\ $$ $$\mathrm{hence}\:\mathrm{no}\:\mathrm{common}\:\mathrm{factor}\:\mathrm{between}\:{A}\:\mathrm{and}\:{B}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com