Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 32995 by abdo imad last updated on 09/Apr/18

let u_0 =a , u_1 =b and u_(n+2) =(1/2)(u_n  +u_(n+1) )  1) find u_n  interms of n  2) find lim_(n→∞)  u_n   if a=0

$${let}\:{u}_{\mathrm{0}} ={a}\:,\:{u}_{\mathrm{1}} ={b}\:{and}\:{u}_{{n}+\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left({u}_{{n}} \:+{u}_{{n}+\mathrm{1}} \right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{u}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:{u}_{{n}} \:\:{if}\:{a}=\mathrm{0} \\ $$$$ \\ $$

Commented by abdo imad last updated on 10/Apr/18

u_(n+2)  =(1/2)(u_n  +u_(n+1) ) ⇒2u_(n+2)  =u_(n  ) +u_(n+1 )  ⇒  2u_(n+2)  −u_(n+1)  −u_n =0  the caracteristic equation is  2x^2  −x−1=0 we have Δ=1−4(2)(−1)=9 ⇒  x_1 =((1+3)/4) =1 and x_2 = ((1−3)/4) =−(1/2) ⇒u_n =α +β(−(1/2))^n   u_0 =a ⇒α +β =a , u_1 =b ⇒ α −(β/2) =b ⇒  3(β/2) =a−b ⇒β=(2/3)(a−b) , α =a−β =a −(2/3)(a−b)  = ((a+2b)/3)   ⇒ u_n =((a +2b)/3) +((2a−2b)/3)(−(1/2))^n   2)a=0 ⇒ u_n =((2b)/3) −((2b)/3)(−(1/2))^n    but lim_(n→∞) (−(1/2))^n =0⇒  lim_(n→∞)   u_n =((2b)/3) .

$${u}_{{n}+\mathrm{2}} \:=\frac{\mathrm{1}}{\mathrm{2}}\left({u}_{{n}} \:+{u}_{{n}+\mathrm{1}} \right)\:\Rightarrow\mathrm{2}{u}_{{n}+\mathrm{2}} \:={u}_{{n}\:\:} +{u}_{{n}+\mathrm{1}\:} \:\Rightarrow \\ $$$$\mathrm{2}{u}_{{n}+\mathrm{2}} \:−{u}_{{n}+\mathrm{1}} \:−{u}_{{n}} =\mathrm{0}\:\:{the}\:{caracteristic}\:{equation}\:{is} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:−{x}−\mathrm{1}=\mathrm{0}\:{we}\:{have}\:\Delta=\mathrm{1}−\mathrm{4}\left(\mathrm{2}\right)\left(−\mathrm{1}\right)=\mathrm{9}\:\Rightarrow \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{1}+\mathrm{3}}{\mathrm{4}}\:=\mathrm{1}\:{and}\:{x}_{\mathrm{2}} =\:\frac{\mathrm{1}−\mathrm{3}}{\mathrm{4}}\:=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{u}_{{n}} =\alpha\:+\beta\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$${u}_{\mathrm{0}} ={a}\:\Rightarrow\alpha\:+\beta\:={a}\:,\:{u}_{\mathrm{1}} ={b}\:\Rightarrow\:\alpha\:−\frac{\beta}{\mathrm{2}}\:={b}\:\Rightarrow \\ $$$$\mathrm{3}\frac{\beta}{\mathrm{2}}\:={a}−{b}\:\Rightarrow\beta=\frac{\mathrm{2}}{\mathrm{3}}\left({a}−{b}\right)\:,\:\alpha\:={a}−\beta\:={a}\:−\frac{\mathrm{2}}{\mathrm{3}}\left({a}−{b}\right) \\ $$$$=\:\frac{{a}+\mathrm{2}{b}}{\mathrm{3}}\:\:\:\Rightarrow\:{u}_{{n}} =\frac{{a}\:+\mathrm{2}{b}}{\mathrm{3}}\:+\frac{\mathrm{2}{a}−\mathrm{2}{b}}{\mathrm{3}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$\left.\mathrm{2}\right){a}=\mathrm{0}\:\Rightarrow\:{u}_{{n}} =\frac{\mathrm{2}{b}}{\mathrm{3}}\:−\frac{\mathrm{2}{b}}{\mathrm{3}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \:\:\:{but}\:{lim}_{{n}\rightarrow\infty} \left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} =\mathrm{0}\Rightarrow \\ $$$${lim}_{{n}\rightarrow\infty} \:\:{u}_{{n}} =\frac{\mathrm{2}{b}}{\mathrm{3}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com