Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 32996 by abdo imad last updated on 09/Apr/18

find the sequence (v_n ) wich verify  v_(n+2)  =(√(v_n  .v_(n+1) )) .

$${find}\:{the}\:{sequence}\:\left({v}_{{n}} \right)\:{wich}\:{verify}\:\:{v}_{{n}+\mathrm{2}} \:=\sqrt{{v}_{{n}} \:.{v}_{{n}+\mathrm{1}} }\:. \\ $$

Commented by prof Abdo imad last updated on 11/Apr/18

v_n  must be positif and ln(v_(n+2) )=(1/2)ln(v_n )+(1/2)ln(v_(n+1) )  ley put u_n = ln(v_n ) ⇒u_(n+2)  = (1/2) u_n  +(1/(2 ))u_(n+1)  ⇒  2u_(n+2)  −u_(n+1)  −u_n =0   carscteristic equation  2x^2  −x −1 =0  Δ=1−4(2)(−1)= 9  x_1 =((1+3)/4) =1 and x_2 =((1−3)/4) =−(1/2) ⇒u_n = α +β(−(1/2))^n   u_0 = α +β  and u_1  =α −(β/2) ⇒u_0  −u_1 =(3/2)β ⇒  β =(2/3)(u_0  −u_1 )  α =u_0  −β=u_0   −((2u_0  −2u_1 )/3) = ((u_(0 )   +2u_1 )/3) ⇒  u_n = ((u_0   +2u_1 )/3)  + ((2u_0  −2u_1 )/3) (−(1/2))^n   v_n =e^u_n      .

$${v}_{{n}} \:{must}\:{be}\:{positif}\:{and}\:{ln}\left({v}_{{n}+\mathrm{2}} \right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({v}_{{n}} \right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({v}_{{n}+\mathrm{1}} \right) \\ $$$${ley}\:{put}\:{u}_{{n}} =\:{ln}\left({v}_{{n}} \right)\:\Rightarrow{u}_{{n}+\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{u}_{{n}} \:+\frac{\mathrm{1}}{\mathrm{2}\:}{u}_{{n}+\mathrm{1}} \:\Rightarrow \\ $$$$\mathrm{2}{u}_{{n}+\mathrm{2}} \:−{u}_{{n}+\mathrm{1}} \:−{u}_{{n}} =\mathrm{0}\:\:\:{carscteristic}\:{equation} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:−{x}\:−\mathrm{1}\:=\mathrm{0}\:\:\Delta=\mathrm{1}−\mathrm{4}\left(\mathrm{2}\right)\left(−\mathrm{1}\right)=\:\mathrm{9} \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{1}+\mathrm{3}}{\mathrm{4}}\:=\mathrm{1}\:{and}\:{x}_{\mathrm{2}} =\frac{\mathrm{1}−\mathrm{3}}{\mathrm{4}}\:=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{u}_{{n}} =\:\alpha\:+\beta\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$${u}_{\mathrm{0}} =\:\alpha\:+\beta\:\:{and}\:{u}_{\mathrm{1}} \:=\alpha\:−\frac{\beta}{\mathrm{2}}\:\Rightarrow{u}_{\mathrm{0}} \:−{u}_{\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}}\beta\:\Rightarrow \\ $$$$\beta\:=\frac{\mathrm{2}}{\mathrm{3}}\left({u}_{\mathrm{0}} \:−{u}_{\mathrm{1}} \right) \\ $$$$\alpha\:={u}_{\mathrm{0}} \:−\beta={u}_{\mathrm{0}} \:\:−\frac{\mathrm{2}{u}_{\mathrm{0}} \:−\mathrm{2}{u}_{\mathrm{1}} }{\mathrm{3}}\:=\:\frac{{u}_{\mathrm{0}\:} \:\:+\mathrm{2}{u}_{\mathrm{1}} }{\mathrm{3}}\:\Rightarrow \\ $$$${u}_{{n}} =\:\frac{{u}_{\mathrm{0}} \:\:+\mathrm{2}{u}_{\mathrm{1}} }{\mathrm{3}}\:\:+\:\frac{\mathrm{2}{u}_{\mathrm{0}} \:−\mathrm{2}{u}_{\mathrm{1}} }{\mathrm{3}}\:\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$${v}_{{n}} ={e}^{{u}_{{n}} } \:\:\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com