Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 32997 by abdo imad last updated on 09/Apr/18

calculate Σ_(n=0) ^∞    ((2n+3)/((n+1)^2 (n+2)^2 ))

$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{n}+\mathrm{3}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$

Commented by abdo imad last updated on 10/Apr/18

let find a and b /  F(n)=  ((2n+3)/((n+1)^2 (n+2^ )^2 )) = (a/((n+1)^2 )) +(b/((n+2)^2 ))  we have lim_(n→+∞) (n+1)^2  F(n)=0 =a +b ⇒b=−a  F(0) =(3/4)=a +(b/4) ⇒ 3 =4a+b =a+b +3a=3a ⇒a=1  and b=−1 ⇒((2n+3)/((n+1)^2 (n+2)^2 )) = (1/((n+1)^2 )) −(1/((n+2)^2 ))  let put S_N  =Σ_(n=0) ^N   ((2n+3)/((n+1)^2 (n+2)^2 ))  and  S =Σ_(n=0) ^∞     ((2n+3)/((n+1)^2 (n+2)^2 )) we have S=lim_(N→∞) S_N   but S_N =Σ_(n=0) ^N  ( (1/((n+1)^2 )) −(1/((n+2)^2 )))=Σ_(n=0) ^N (u_n − u_(n+1) )  with u_n = (1/((n+1)^2 )) ⇒ S_N  =u_0  −u_1  +u_1 −u_2  +...u_n −u_(n+1)   =u_0  −u_(n+1) = 1− (1/((n+2)^2 )) ⇒ lim_(n→+∞)  S_N =1  ⇒ S =1 .

$${let}\:{find}\:{a}\:{and}\:{b}\:/\:\:{F}\left({n}\right)=\:\:\frac{\mathrm{2}{n}+\mathrm{3}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{2}^{} \right)^{\mathrm{2}} }\:=\:\frac{{a}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{{b}}{\left({n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$${we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \left({n}+\mathrm{1}\right)^{\mathrm{2}} \:{F}\left({n}\right)=\mathrm{0}\:={a}\:+{b}\:\Rightarrow{b}=−{a} \\ $$$${F}\left(\mathrm{0}\right)\:=\frac{\mathrm{3}}{\mathrm{4}}={a}\:+\frac{{b}}{\mathrm{4}}\:\Rightarrow\:\mathrm{3}\:=\mathrm{4}{a}+{b}\:={a}+{b}\:+\mathrm{3}{a}=\mathrm{3}{a}\:\Rightarrow{a}=\mathrm{1} \\ $$$${and}\:{b}=−\mathrm{1}\:\Rightarrow\frac{\mathrm{2}{n}+\mathrm{3}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{2}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\left({n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$${let}\:{put}\:{S}_{{N}} \:=\sum_{{n}=\mathrm{0}} ^{{N}} \:\:\frac{\mathrm{2}{n}+\mathrm{3}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{2}\right)^{\mathrm{2}} }\:\:{and} \\ $$$${S}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{n}+\mathrm{3}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{2}\right)^{\mathrm{2}} }\:{we}\:{have}\:{S}={lim}_{{N}\rightarrow\infty} {S}_{{N}} \\ $$$${but}\:{S}_{{N}} =\sum_{{n}=\mathrm{0}} ^{{N}} \:\left(\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\left({n}+\mathrm{2}\right)^{\mathrm{2}} }\right)=\sum_{{n}=\mathrm{0}} ^{{N}} \left({u}_{{n}} −\:{u}_{{n}+\mathrm{1}} \right) \\ $$$${with}\:{u}_{{n}} =\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\:{S}_{{N}} \:={u}_{\mathrm{0}} \:−{u}_{\mathrm{1}} \:+{u}_{\mathrm{1}} −{u}_{\mathrm{2}} \:+...{u}_{{n}} −{u}_{{n}+\mathrm{1}} \\ $$$$={u}_{\mathrm{0}} \:−{u}_{{n}+\mathrm{1}} =\:\mathrm{1}−\:\frac{\mathrm{1}}{\left({n}+\mathrm{2}\right)^{\mathrm{2}} }\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{N}} =\mathrm{1} \\ $$$$\Rightarrow\:{S}\:=\mathrm{1}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com