Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33009 by kyle_TW last updated on 09/Apr/18

help ! ! !  ∫ (dx/(csc(x)−1)) = ?    [ my way ]  ∫( (dx/((1/(sinx)) − 1)) )  =∫((sinx)/(1−sinx)) dx  =−∫ ((sinx−1+1)/(sinx−1)) dx  =−∫1+(1/(sinx−1)) dx  =−(∫1dx+∫((sinx+1)/((sinx−1)(sinx+1))) dx)  =−(x+C−∫((sinx+1)/(1−sin^2 x)) dx)  =−(x+C−∫ ((sinx)/(cos^2 x)) dx−∫ (1/(cos^2 x)) dx)  =−(x+C+∫(cosx)^(−2) dcosx−∫(1/(cos^2 x))dx)  =−(x−(cosx)^(−1) +C−∫(1/(cos^2 x))dx)  ...and I can′t solve the ∫(1/(cos^2 x))dx    oh i just found that is tanx+C

help!!!dxcsc(x)1=?[myway](dx1sinx1)=sinx1sinxdx=sinx1+1sinx1dx=1+1sinx1dx=(1dx+sinx+1(sinx1)(sinx+1)dx)=(x+Csinx+11sin2xdx)=(x+Csinxcos2xdx1cos2xdx)=(x+C+(cosx)2dcosx1cos2xdx)=(x(cosx)1+C1cos2xdx)...andIcantsolvethe1cos2xdxohijustfoundthatistanx+C

Commented by prof Abdo imad last updated on 09/Apr/18

let put  I = ∫   (dx/((1/(sinx)) −1))  I = ∫      ((sinx)/(1−sinx))dx   =−∫  ((1−sinx −1)/(1−sinx))dx  = −x+∫  (dx/(1−sinx))  the ch.tan((x/2))=t give  ∫    (dx/(1−sinx)) = ∫  (( 1)/(1 − ((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫    ((2dt)/(1+t^2 −2t)) = 2 ∫  (dt/((t−1)^2 )) = ((−2)/(t−1))  = (2/(1−t))  = (2/(1−tan((x/2)))) ⇒  I =  −x   +   (2/(1 −tan((x/2)))) +λ .

letputI=dx1sinx1I=sinx1sinxdx=1sinx11sinxdx=x+dx1sinxthech.tan(x2)=tgivedx1sinx=112t1+t22dt1+t2=2dt1+t22t=2dt(t1)2=2t1=21t=21tan(x2)I=x+21tan(x2)+λ.

Answered by Joel578 last updated on 09/Apr/18

I = ∫ (dx/(((1/(sin x)) − ((sin x)/(sin x)))))  = ∫ ((sin x)/(1 − sin x)) dx     = ∫ (((sin x)/(1 − sin x)))(((1 + sin x)/(1 + sin x))) dx     = ∫ ((sin x + sin^2  x)/(cos^2  x)) dx     = ∫ tan x sec x dx + ∫ tan^2  x dx     = ∫ tan x sec x dx + ∫ sec^2  x − 1 dx     = sec x + tan x − x + C

I=dx(1sinxsinxsinx)=sinx1sinxdx=(sinx1sinx)(1+sinx1+sinx)dx=sinx+sin2xcos2xdx=tanxsecxdx+tan2xdx=tanxsecxdx+sec2x1dx=secx+tanxx+C

Commented by kyle_TW last updated on 09/Apr/18

wow thank you very much

wowthankyouverymuch

Commented by kyle_TW last updated on 09/Apr/18

I forgot secx = (1/(cosx))...

Iforgotsecx=1cosx...

Answered by math1967 last updated on 09/Apr/18

∫(1/(cosex−1))dx  ∫((cosex+1)/(cot^2 x))dx  ∫((cosecx)/(cot^2 x))dx +∫tan^2 xdx  ∫((sinx)/(cos^2 x))dx +∫sec^2 x −∫dx  −∫((d(cosx))/(cos^2 x)) +tanx −x  (1/3)×(1/(cos^3 x)) +tanx −x +C

1cosex1dxcosex+1cot2xdxcosecxcot2xdx+tan2xdxsinxcos2xdx+sec2xdxd(cosx)cos2x+tanxx13×1cos3x+tanxx+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com