Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33026 by prof Abdo imad last updated on 09/Apr/18

calculate ∫_0 ^∞    ((1+x^4 )/(1+x^6 )) dx .

calculate01+x41+x6dx.

Commented by abdo imad last updated on 09/Apr/18

let put I =∫_0 ^∞  ((1+x^4 )/(1+x^6 ))dx  we have  I = ∫_0 ^∞   (dx/(1+x^6 )) + ∫_0 ^∞   (x^4 /(1+x^6 ))dx .the ch.x^6 =t give  ∫_0 ^∞   (dx/(1+x^6 )) =∫_0 ^∞  (((1/6)t^((1/6)−1) )/(1+t))dt=(1/6)∫_0 ^∞   (t^((1/6)−1) /(1+t))dt  =(1/6) (π/(sin((π/6))))   ( by using the result ∫_0 ^∞   (t^(a−1) /(1+t))dt = (π/(sin(πa)))  with 0<a<1 )  = (π/(6.(1/2))) = (π/3)   .also the same ch.x^6 =t give x=t^(1/6)   ∫_0 ^∞   (x^4 /(1+x^6 ))dx = ∫_0 ^∞     (t^(4/6) /(1+t)) .(1/6) t^((1/6)−1)  dt  =(1/6) ∫_0 ^∞    (t^((4/6) +(1/6) −1) /(1+t)) dt  =(1/6) ∫_0 ^∞    (t^((5/6) −1) /(1+t)) dt  =(1/6) (π/(sin(((5π)/6)))) = (π/(6sin(π−(π/6)))) = (π/(6 sin((π/6)))) =(π/3) ⇒  I =(π/3) +(π/3) =((2π)/3) .

letputI=01+x41+x6dxwehaveI=0dx1+x6+0x41+x6dx.thech.x6=tgive0dx1+x6=016t1611+tdt=160t1611+tdt=16πsin(π6)(byusingtheresult0ta11+tdt=πsin(πa)with0<a<1)=π6.12=π3.alsothesamech.x6=tgivex=t160x41+x6dx=0t461+t.16t161dt=160t46+1611+tdt=160t5611+tdt=16πsin(5π6)=π6sin(ππ6)=π6sin(π6)=π3I=π3+π3=2π3.

Answered by Joel578 last updated on 09/Apr/18

I = lim_(n→∞)  (∫_0 ^n  ((x^4  + 1)/(x^6  + 1)) dx)    ∫ ((x^4  + 1)/(x^6  + 1)) dx = ∫ ((x^4  + 1 + x^2  − x^2 )/((x^2  +1)(x^4  − x^2  + 1))) dx                            = ∫ (1/(x^2  + 1)) dx + ∫ (x^2 /(x^6  + 1)) dx                            = tan^(−1)  x + ∫ (x^2 /(x^6  + 1)) dx   (u = x^3   →  du = 3x^2  dx)                            = tan^(−1)  x + (1/3) ∫ (1/(u^2  + 1)) du                            = tan^(−1)  x + (1/3)tan^(−1)  u + C                            = tan^(−1)  (x) + (1/3)tan^(−1)  (x^3 ) + C    I = lim_(n→∞)  [tan^(−1)  (x) + (1/3)tan^(−1)  (x^3 )]_0 ^n      = lim_(n→∞)  (tan^(−1)  (n) + (1/3)tan^(−1)  (n^3 )) − (tan^(−1)  (0) + (1/3)tan^(−1)  (0))     = (π/2) + (1/3)((π/2)) − 0     = ((2π)/3)

I=limn(0nx4+1x6+1dx)x4+1x6+1dx=x4+1+x2x2(x2+1)(x4x2+1)dx=1x2+1dx+x2x6+1dx=tan1x+x2x6+1dx(u=x3du=3x2dx)=tan1x+131u2+1du=tan1x+13tan1u+C=tan1(x)+13tan1(x3)+CI=limn[tan1(x)+13tan1(x3)]0n=limn(tan1(n)+13tan1(n3))(tan1(0)+13tan1(0))=π2+13(π2)0=2π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com