All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33026 by prof Abdo imad last updated on 09/Apr/18
calculate∫0∞1+x41+x6dx.
Commented by abdo imad last updated on 09/Apr/18
letputI=∫0∞1+x41+x6dxwehaveI=∫0∞dx1+x6+∫0∞x41+x6dx.thech.x6=tgive∫0∞dx1+x6=∫0∞16t16−11+tdt=16∫0∞t16−11+tdt=16πsin(π6)(byusingtheresult∫0∞ta−11+tdt=πsin(πa)with0<a<1)=π6.12=π3.alsothesamech.x6=tgivex=t16∫0∞x41+x6dx=∫0∞t461+t.16t16−1dt=16∫0∞t46+16−11+tdt=16∫0∞t56−11+tdt=16πsin(5π6)=π6sin(π−π6)=π6sin(π6)=π3⇒I=π3+π3=2π3.
Answered by Joel578 last updated on 09/Apr/18
I=limn→∞(∫0nx4+1x6+1dx)∫x4+1x6+1dx=∫x4+1+x2−x2(x2+1)(x4−x2+1)dx=∫1x2+1dx+∫x2x6+1dx=tan−1x+∫x2x6+1dx(u=x3→du=3x2dx)=tan−1x+13∫1u2+1du=tan−1x+13tan−1u+C=tan−1(x)+13tan−1(x3)+CI=limn→∞[tan−1(x)+13tan−1(x3)]0n=limn→∞(tan−1(n)+13tan−1(n3))−(tan−1(0)+13tan−1(0))=π2+13(π2)−0=2π3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com