All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 33064 by artibunja last updated on 09/Apr/18
Commented by abdo imad last updated on 09/Apr/18
wemusthave2x+3>0and10x2+13x+4>0Δ=132−4×10×4=169−160=9>0x1=−13+320=−12,x2=−13−320=−1620=−45wemusthavex∈(]−∞,−45[∪]−12,+∞[)∩]−32,+∞[⇒x∈]−32,−45[∪]−12,+∞[(e)⇔ln(10x2+13x+4)ln(2x+3)=2⇔ln(10x2+13x+4)=ln((2x+3)2)⇔10x2+13x+4=4x2+12x+9⇔6x2+x−5=0Δ=1−4.6.(−5)=121⇒x1=−1+1112=1012=56x2=−1−1112=−1but−1∈D(e),56∈D(e)⇒−1and56arethesolutionsofthisequation.
forx=−1wehave2x+3=1so−1isnotsolution.
Answered by Rasheed.Sindhi last updated on 10/Apr/18
log2x+3(10x2+13x+4)=2(2x+3)2=10x2+13x+44x2+12x+9=10x2+13x+46x2+x−5=06x2+6x−5x−5=06x(x+1)−5(x+1)=0(x+1)(6x−5)=0x=−1∣x=56x=−1makes2x+3=1whichmaynotbethebaseoflogarithm(assirabdoimadwroteinhissolution)∴x=56
Terms of Service
Privacy Policy
Contact: info@tinkutara.com