Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 33095 by 7991 last updated on 10/Apr/18

z=x+yi ∈ C  z^− =x−y ∈ C  proof ∣z∣^2 =∣z^2 ∣=zz^− , so z≠0 →(1/z)=(z^− /(∣z∣^2 ))

$${z}={x}+{yi}\:\in\:\mathbb{C} \\ $$$$\overset{−} {{z}}={x}−{y}\:\in\:\mathbb{C} \\ $$$${proof}\:\mid{z}\mid^{\mathrm{2}} =\mid{z}^{\mathrm{2}} \mid={z}\overset{−} {{z}},\:{so}\:{z}\neq\mathrm{0}\:\rightarrow\frac{\mathrm{1}}{{z}}=\frac{\overset{−} {{z}}}{\mid{z}\mid^{\mathrm{2}} } \\ $$

Answered by Rasheed.Sindhi last updated on 10/Apr/18

z=x+yi ∈ C , z^(−) =x−yi  ∣z∣=∣x+yi∣=(√(x^2 +y^2 ))  ∴ ∣z∣^2 =x^2 +y^2 .............A  ∣z^2 ∣=∣(x+yi)^2 ∣=∣x^2 −y^2 +2xyi∣        =(√((x^2 −y^2 )^2 +(2xy)^2 ))         =(√(x^4 +y^4 −2x^2 y^2 +4x^2 y^2 ))         =(√(x^4 +y^4 +2x^2 y^2 ))         =(√((x^2 +y^2 )^2 ))         =x^2 +y^2 ...............B  z.z^(−) =(x+yi)(x−yi)=(x)^2 −(yi)^2          =x^2 +y^2 .................C  From A,B & C       ∣z∣^2 =∣z^2 ∣=z.z^(−)      z.z^(−) =∣z^2 ∣⇒z=((∣z^2 ∣)/z^− )⇒(1/z)=(z^− /(∣z^2 ∣))

$${z}={x}+{yi}\:\in\:\mathbb{C}\:,\:\overline {{z}}={x}−{yi} \\ $$$$\mid\mathrm{z}\mid=\mid{x}+{yi}\mid=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} } \\ $$$$\therefore\:\mid\mathrm{z}\mid^{\mathrm{2}} =\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} .............\mathrm{A} \\ $$$$\mid\mathrm{z}^{\mathrm{2}} \mid=\mid\left({x}+{yi}\right)^{\mathrm{2}} \mid=\mid\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} +\mathrm{2xyi}\mid \\ $$$$\:\:\:\:\:\:=\sqrt{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\mathrm{2xy}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:=\sqrt{\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} −\mathrm{2x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:=\sqrt{\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} +\mathrm{2x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:=\sqrt{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} ...............\mathrm{B} \\ $$$$\mathrm{z}.\overline {\mathrm{z}}=\left({x}+{yi}\right)\left({x}−{yi}\right)=\left(\mathrm{x}\right)^{\mathrm{2}} −\left(\mathrm{yi}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} .................\mathrm{C} \\ $$$$\mathrm{From}\:\mathrm{A},\mathrm{B}\:\&\:\mathrm{C} \\ $$$$\:\:\:\:\:\mid\mathrm{z}\mid^{\mathrm{2}} =\mid\mathrm{z}^{\mathrm{2}} \mid=\mathrm{z}.\overline {\mathrm{z}} \\ $$$$\:\:\:\mathrm{z}.\overline {\mathrm{z}}=\mid\mathrm{z}^{\mathrm{2}} \mid\Rightarrow\mathrm{z}=\frac{\mid\mathrm{z}^{\mathrm{2}} \mid}{\overset{−} {\mathrm{z}}}\Rightarrow\frac{\mathrm{1}}{\mathrm{z}}=\frac{\overset{−} {\mathrm{z}}}{\mid\mathrm{z}^{\mathrm{2}} \mid} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com