Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33119 by abdo imad last updated on 10/Apr/18

find  ∫_0 ^∞    (t^n /(e^t  −1)) dt by using ξ(x) for n integr  ξ(x)=Σ_(n=1) ^∞  (1/n^x )   with x>1 .

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{n}} }{{e}^{{t}} \:−\mathrm{1}}\:{dt}\:{by}\:{using}\:\xi\left({x}\right)\:{for}\:{n}\:{integr} \\ $$ $$\xi\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:{with}\:{x}>\mathrm{1}\:. \\ $$

Commented byprof Abdo imad last updated on 15/Apr/18

let put A_n = ∫_0 ^∞   (t^n /(e^t  −1))dt   A_n = ∫_0 ^∞ ((e^(−t)  t^n )/(1−e^(−t) ))dt  =∫_0 ^∞  t^n e^(−t)  ( Σ_(p=0) ^∞  e^(−pt) )dt  = Σ_(p=0) ^∞   ∫_0 ^∞  t^n   e^(−(p+1)t)  dt  thech (p+1)t =u give  A_n  = Σ_(p=0) ^∞   ∫_0 ^∞  (u^n /((p+1)^n )) e^(−u)  (du/((p+1)))  = Σ_(p=0) ^∞   (1/((p+1)^(n+1) )) ∫_0 ^∞  u^n  e^(−u)  du  but we know that  Γ(x) = ∫_0 ^∞  t^(x−1)  e^(−t) dt  for x>0 ⇒  ∫_0 ^∞  u^n  e^(−u)  du = Γ(n+1)  and Σ_(p=0) ^∞   (1/((p+1)^(n+1) ))  =Σ_(p=1) ^∞   (1/p^(n+1) ) =ξ(n+1) ⇒  A_n = Γ(n+1).ξ(n+1) .

$${let}\:{put}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{n}} }{{e}^{{t}} \:−\mathrm{1}}{dt}\: \\ $$ $${A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} \:{t}^{{n}} }{\mathrm{1}−{e}^{−{t}} }{dt}\:\:=\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} {e}^{−{t}} \:\left(\:\sum_{{p}=\mathrm{0}} ^{\infty} \:{e}^{−{pt}} \right){dt} \\ $$ $$=\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} \:\:{e}^{−\left({p}+\mathrm{1}\right){t}} \:{dt}\:\:{thech}\:\left({p}+\mathrm{1}\right){t}\:={u}\:{give} \\ $$ $${A}_{{n}} \:=\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{u}^{{n}} }{\left({p}+\mathrm{1}\right)^{{n}} }\:{e}^{−{u}} \:\frac{{du}}{\left({p}+\mathrm{1}\right)} \\ $$ $$=\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({p}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:\int_{\mathrm{0}} ^{\infty} \:{u}^{{n}} \:{e}^{−{u}} \:{du}\:\:{but}\:{we}\:{know}\:{that} \\ $$ $$\Gamma\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:{for}\:{x}>\mathrm{0}\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:{u}^{{n}} \:{e}^{−{u}} \:{du}\:=\:\Gamma\left({n}+\mathrm{1}\right)\:\:{and}\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({p}+\mathrm{1}\right)^{{n}+\mathrm{1}} } \\ $$ $$=\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{p}^{{n}+\mathrm{1}} }\:=\xi\left({n}+\mathrm{1}\right)\:\Rightarrow \\ $$ $${A}_{{n}} =\:\Gamma\left({n}+\mathrm{1}\right).\xi\left({n}+\mathrm{1}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com