All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33119 by abdo imad last updated on 10/Apr/18
find∫0∞tnet−1dtbyusingξ(x)fornintegr ξ(x)=∑n=1∞1nxwithx>1.
Commented byprof Abdo imad last updated on 15/Apr/18
letputAn=∫0∞tnet−1dt An=∫0∞e−ttn1−e−tdt=∫0∞tne−t(∑p=0∞e−pt)dt =∑p=0∞∫0∞tne−(p+1)tdtthech(p+1)t=ugive An=∑p=0∞∫0∞un(p+1)ne−udu(p+1) =∑p=0∞1(p+1)n+1∫0∞une−udubutweknowthat Γ(x)=∫0∞tx−1e−tdtforx>0⇒ ∫0∞une−udu=Γ(n+1)and∑p=0∞1(p+1)n+1 =∑p=1∞1pn+1=ξ(n+1)⇒ An=Γ(n+1).ξ(n+1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com