All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 33131 by prof Abdo imad last updated on 11/Apr/18
1)find∑n=1∞einxn(n+1)2)findthevalueof∑n⩾1sin(nx)n(n+1)and∑n⩾1cos(nx)n(n+1).
Commented by prof Abdo imad last updated on 12/Apr/18
letfindS(x)=∑n=1∞xnn(n+1)theradiusofconvergrnceis1andforx=+−1theserieisalsoconvergentwehavefor∣x∣<1S(x)=∑n=1∞(1n−1n+1)xn=∑n=1∞xnn−∑n=1∞xnn+1but∑n=1∞xnn=−ln(1−x)∑n=1∞xnn+1=∑n=2∞xn−1n=1x∑n=2∞xnn=1x(−ln(1−x)−x)=−1xln(1−x)−1⇒S(x)=−ln(1−x)+1xln(1−x)+1=(−1+1x)ln(1−x)+1⇒S(x)=1−xxln(1−x)+1letchangexpereixweget∑n=1∞einxn(n+1)=1−eixeixln(1−eix)+1=(e−ix−1)ln(1−eix)+12)∑n=1∞sin(nx)n(n+1)=Im(S(eix))letfindit(e−ix−1)=cosx−isinx−1=−2sin2(x2)−2isin(x2)cos(x2)=−2isin(x2)(cos(x2)−isin(x2))=−2ie−ix2ln(1−eix)=ln(1−cosx−isinx)=ln(2sin2(x2)−2isin(x2)cos(x2))=ln(−2isin(x2)(cos(x2)+isin(x2))=ln(−i)+ln(2sin(x2)+ln(eix2)=−iπ2+ln(2sin(x2))+ix2=ln(2sin(x2))+ix−π2Im(S(eix))=−2ie−ix2(ln(2sin(x2)+ix−π2)=−2i(cos(x2)−isin(x2))(ln(2sin(x2)+ix−π2)=−2i)(cos(x2)ln(2sin(x2)+ix−π2cos(x2)−isin(x2)ln(2sin(x2)+x−π2sin(x2))=−2icos(x2)ln(2sin(x2)+(x−π)cos(x2)−2sin(x2)ln(2sin(x2)+i(π−x)sin(x2)⇒∑n=1∞sin(nx)n(n+1)=(π−x)sin(x2)−sin(x2)ln(2sin(x2))∑n=1∞cos(nx)n(n+1)=(x−π)cos(x2)−2sin(x2)ln(2sin(x2))+1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com