Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33131 by prof Abdo imad last updated on 11/Apr/18

1)find  Σ_(n=1) ^∞   (e^(inx) /(n(n+1)))  2) find the value of   Σ_(n≥1)  ((sin(nx))/(n(n+1)))  and Σ_(n≥1)   ((cos(nx))/(n(n+1))) .

1)findn=1einxn(n+1)2)findthevalueofn1sin(nx)n(n+1)andn1cos(nx)n(n+1).

Commented by prof Abdo imad last updated on 12/Apr/18

let find S(x) = Σ_(n=1) ^∞   (x^n /(n(n+1)))  the radius of   convergrnce is 1 and  for x=+^− 1 the serie is  also convergent we have for  ∣x∣<1  S(x)= Σ_(n=1) ^∞   ((1/n) −(1/(n+1)))x^n  =Σ_(n=1) ^∞  (x^n /n) −Σ_(n=1) ^∞   (x^n /(n+1))  but  Σ_(n=1) ^∞   (x^n /n) =−ln(1−x)  Σ_(n=1) ^∞    (x^n /(n+1)) = Σ_(n=2) ^∞   (x^(n−1) /n) = (1/x) Σ_(n=2) ^∞   (x^n /n)  =(1/x)( −ln(1−x) −x)  =−(1/x)ln(1−x) −1 ⇒  S(x)= −ln(1−x) +(1/x)ln(1−x) +1  =(−1 +(1/x))ln(1−x) +1 ⇒  S(x) = ((1−x)/x) ln(1−x) +1  let change x per e^(ix)   we get  Σ_(n=1) ^∞     (e^(inx) /(n(n+1)))  = ((1−e^(ix) )/e^(ix) ) ln(1−e^(ix) ) +1  =( e^(−ix)  −1)ln(1−e^(ix) ) +1  2) Σ_(n=1) ^∞   ((sin(nx))/(n(n+1)))  =Im(S(e^(ix) ))  let find it  (e^(−ix)  −1) = cosx −i sinx −1    = −2sin^2 ((x/2)) −2i sin((x/2))cos((x/2))  = −2i sin((x/2))( cos((x/2)) −i sin((x/2)))  =−2i e^(−i(x/2))   ln(1−e^(ix) ) = ln (1−cosx −isinx)  = ln( 2sin^2 ((x/2)) −2i sin((x/2))cos((x/2)))  =ln(−2i sin((x/2))(cos((x/2)) +isin((x/2)))  = ln(−i) +ln(2sin((x/2)) +ln(e^(i(x/2)) )  =−i (π/2) +ln(2sin((x/2))) +((ix)/2)  =ln(2sin((x/2))) +i((x−π)/2)  Im( S(e^(ix) )) = −2i e^(−i(x/2)) (  ln(2sin((x/2)) +i((x−π)/2))  =−2i( cos((x/2)) −isin((x/2)))(ln(2sin((x/2)) +i((x−π)/2))  = −2i ) ( cos((x/2))ln(2sin((x/2)) +i((x−π)/2) cos((x/2))  −i sin((x/2))ln(2sin((x/2)) +((x−π)/2) sin((x/2)))  = −2i cos((x/2))ln(2sin((x/2)) +(x−π)cos((x/2))  −2 sin((x/2))ln(2sin((x/2)) +i(π−x) sin((x/2)) ⇒  Σ_(n=1) ^∞  ((sin(nx))/(n(n+1)))  =(π−x)sin((x/2)) −sin((x/2))ln(2sin((x/2)))  Σ_(n=1) ^∞   ((cos(nx))/(n(n+1))) =(x−π)cos((x/2)) −2sin((x/2))ln(2sin((x/2))) +1.

letfindS(x)=n=1xnn(n+1)theradiusofconvergrnceis1andforx=+1theserieisalsoconvergentwehaveforx∣<1S(x)=n=1(1n1n+1)xn=n=1xnnn=1xnn+1butn=1xnn=ln(1x)n=1xnn+1=n=2xn1n=1xn=2xnn=1x(ln(1x)x)=1xln(1x)1S(x)=ln(1x)+1xln(1x)+1=(1+1x)ln(1x)+1S(x)=1xxln(1x)+1letchangexpereixwegetn=1einxn(n+1)=1eixeixln(1eix)+1=(eix1)ln(1eix)+12)n=1sin(nx)n(n+1)=Im(S(eix))letfindit(eix1)=cosxisinx1=2sin2(x2)2isin(x2)cos(x2)=2isin(x2)(cos(x2)isin(x2))=2ieix2ln(1eix)=ln(1cosxisinx)=ln(2sin2(x2)2isin(x2)cos(x2))=ln(2isin(x2)(cos(x2)+isin(x2))=ln(i)+ln(2sin(x2)+ln(eix2)=iπ2+ln(2sin(x2))+ix2=ln(2sin(x2))+ixπ2Im(S(eix))=2ieix2(ln(2sin(x2)+ixπ2)=2i(cos(x2)isin(x2))(ln(2sin(x2)+ixπ2)=2i)(cos(x2)ln(2sin(x2)+ixπ2cos(x2)isin(x2)ln(2sin(x2)+xπ2sin(x2))=2icos(x2)ln(2sin(x2)+(xπ)cos(x2)2sin(x2)ln(2sin(x2)+i(πx)sin(x2)n=1sin(nx)n(n+1)=(πx)sin(x2)sin(x2)ln(2sin(x2))n=1cos(nx)n(n+1)=(xπ)cos(x2)2sin(x2)ln(2sin(x2))+1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com