All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 33145 by Ahmad Hajjaj last updated on 11/Apr/18
∫30dxx+1+5x+1=
Commented by prof Abdo imad last updated on 11/Apr/18
I=∫03dxx+1+5x+1.ch.x+1=t⇒I=∫122tdtt+5(t2−1)+1=∫122tdtt+5t2−4=∫122dt1+5t2−4t2=∫122dt1+5−4t2afterweusethech.2t=5sinx⇒t2=15sinx⇒t=25sinxdt=−25cosxsin2xandx=arcsin(2t5)I=∫arcsin(25)arcsin(15)11+51−sin2x−25cosxsin2xdx=−25∫arcsin(25)arcsin(15)cosxsin2x(1+5cosx)dx∫αβ−cosxsin2x(1+5cosx)(byparts)=[1sinx11+5cosx]αβ−∫αβ1sinx5sinx(1+5cosx)2dx=1sinβ(1+5cosβ)−1sinα(1+5cosα)−5∫αβdx(1+5cosx)2andthisintegraliscalculablebych.tan(x2)=u....α=arcsin(25)andβ=arcsin(15).
Answered by MJS last updated on 11/Apr/18
1a+b=a−b(a+b)(a−b)=a−ba2−b21x+1+5x+1=x+1−5x+1x+1−5x−1==5x+1−x+14x∫30dxx+1+5x+1=14[(∫5x+1xdx−∫x+1xdx)]03=(∫ax+bxdxwithb>0)==2ax+b+b×ln∣ax+b−bax+b+b∣=14[((25x+1+ln∣5x+1−15x+1+1∣)−(2x+1+ln∣x+1−1x+1+1∣))]03==14[2(5x+1−x+1)+ln(5x+1−1)−ln(5x+1+1)−ln(x+1−1)+ln(x+1+1)]03==14[2(5x+1−x+1)+lnx+1+15x+1+1+ln5x+1−1x+1−1]03=limx→05x+1−1x+1−1=5=1+12ln35
Terms of Service
Privacy Policy
Contact: info@tinkutara.com