Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33155 by Joel578 last updated on 11/Apr/18

Evaluate  ∫_(−∞) ^∞  3x^2 (x^3  + 1)^2  e^(−x^6  − 2x^3 )  dx

$$\mathrm{Evaluate} \\ $$$$\int_{−\infty} ^{\infty} \:\mathrm{3}{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} \:+\:\mathrm{1}\right)^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{6}} \:−\:\mathrm{2}{x}^{\mathrm{3}} } \:{dx} \\ $$

Commented by Joel578 last updated on 11/Apr/18

My try  u = x^3  + 1  →  du = 3x^2  dx  I = ∫_(−∞) ^∞  3x^2  u^2  e^(−x^3 (u + 1))  ((du/(3x^2 )))      = ∫_(−∞) ^∞  u^2  e^(−(u − 1)(u + 1))  du      = ∫_(−∞) ^∞  u^2  e^(1 − u^2 )  du      = e ∫_(−∞) ^∞  u^2  e^(−u^2 )  du      = 2e ∫_0 ^∞  u^2  e^(−u^2 )  du  I dont know what to do next...

$$\mathrm{My}\:\mathrm{try} \\ $$$${u}\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{1}\:\:\rightarrow\:\:{du}\:=\:\mathrm{3}{x}^{\mathrm{2}} \:{dx} \\ $$$${I}\:=\:\underset{−\infty} {\overset{\infty} {\int}}\:\mathrm{3}{x}^{\mathrm{2}} \:{u}^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{3}} \left({u}\:+\:\mathrm{1}\right)} \:\left(\frac{{du}}{\mathrm{3}{x}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:=\:\underset{−\infty} {\overset{\infty} {\int}}\:{u}^{\mathrm{2}} \:{e}^{−\left({u}\:−\:\mathrm{1}\right)\left({u}\:+\:\mathrm{1}\right)} \:{du} \\ $$$$\:\:\:\:=\:\underset{−\infty} {\overset{\infty} {\int}}\:{u}^{\mathrm{2}} \:{e}^{\mathrm{1}\:−\:{u}^{\mathrm{2}} } \:{du} \\ $$$$\:\:\:\:=\:{e}\:\underset{−\infty} {\overset{\infty} {\int}}\:{u}^{\mathrm{2}} \:{e}^{−{u}^{\mathrm{2}} } \:{du} \\ $$$$\:\:\:\:=\:\mathrm{2}{e}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:{u}^{\mathrm{2}} \:{e}^{−{u}^{\mathrm{2}} } \:{du} \\ $$$$\mathrm{I}\:\mathrm{dont}\:\mathrm{know}\:\mathrm{what}\:\mathrm{to}\:\mathrm{do}\:\mathrm{next}... \\ $$

Commented by prof Abdo imad last updated on 11/Apr/18

let put I = ∫_(−∞) ^(+∞)  3x^2 (x^3  +1)^2   e^(−x^6  −2x^3 ) dx .ch.x^3  =t  give  I =∫_(−∞) ^(+∞)   (t+1)^2  e^(−t^2 −2t)  dt  I =−(1/2) ∫_(−∞) ^(+∞) (t+1)(−2t−2)e^(−t^2  −2t) dt (by parts)  −2I  = [(t+1)e^(−t^2 −2t) ]_(−∞) ^(+∞)   −∫_(−∞) ^(+∞)  e^(−t^2  −2t) dt ⇒  2I  = ∫_(−∞) ^(+∞)   e^(−(  (t+1)^2  −1)) dt  = e ∫_(−∞) ^(+∞)   e^(−(t+1)^2 )  dt  =_(t+1=x)  e ∫_(−∞) ^(+∞)   e^(−x^2 ) dx = e (√(π )) ⇒ I = ((e(√π))/2)   brcause  ∫_(−∞) ^(+∞)  e^(−x^2 )  dx=(√π) .

$${let}\:{put}\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\mathrm{3}{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} \:+\mathrm{1}\right)^{\mathrm{2}} \:\:{e}^{−{x}^{\mathrm{6}} \:−\mathrm{2}{x}^{\mathrm{3}} } {dx}\:.{ch}.{x}^{\mathrm{3}} \:={t} \\ $$$${give}\:\:{I}\:=\int_{−\infty} ^{+\infty} \:\:\left({t}+\mathrm{1}\right)^{\mathrm{2}} \:{e}^{−{t}^{\mathrm{2}} −\mathrm{2}{t}} \:{dt} \\ $$$${I}\:=−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \left({t}+\mathrm{1}\right)\left(−\mathrm{2}{t}−\mathrm{2}\right){e}^{−{t}^{\mathrm{2}} \:−\mathrm{2}{t}} {dt}\:\left({by}\:{parts}\right) \\ $$$$−\mathrm{2}{I}\:\:=\:\left[\left({t}+\mathrm{1}\right){e}^{−{t}^{\mathrm{2}} −\mathrm{2}{t}} \right]_{−\infty} ^{+\infty} \:\:−\int_{−\infty} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} \:−\mathrm{2}{t}} {dt}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:\:=\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left(\:\:\left({t}+\mathrm{1}\right)^{\mathrm{2}} \:−\mathrm{1}\right)} {dt}\:\:=\:{e}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({t}+\mathrm{1}\right)^{\mathrm{2}} } \:{dt} \\ $$$$=_{{t}+\mathrm{1}={x}} \:{e}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{x}^{\mathrm{2}} } {dx}\:=\:{e}\:\sqrt{\pi\:}\:\Rightarrow\:{I}\:=\:\frac{{e}\sqrt{\pi}}{\mathrm{2}}\: \\ $$$${brcause}\:\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } \:{dx}=\sqrt{\pi}\:. \\ $$

Commented by Joel578 last updated on 13/Apr/18

Thank you very much

$${Thank}\:{you}\:{very}\:{much} \\ $$

Commented by abdo imad last updated on 13/Apr/18

nevermind  sir joel.

$${nevermind}\:\:{sir}\:{joel}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com