Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33169 by abdo imad last updated on 11/Apr/18

find the value of  ∫_0 ^π     (dx/(1+2 sin^2 x))  .

findthevalueof0πdx1+2sin2x.

Commented by abdo imad last updated on 12/Apr/18

let put I  =∫_0 ^π    (dx/(1+2sin^2 x)) =∫_0 ^π    (dx/(1+2(1−cos^2 x)))  = ∫_0 ^π     (dx/(3 −2cos^2 x)) =∫_0 ^(π/2)    (dx/(3 −2 cos^2 x)) + ∫_(π/2) ^π    (dx/(3 −2cos^2 x))  =I_1  +I_2    but we knew that  1+tan^2 t =(1/(cos^2 t)) ⇒  cos^2 x = (1/(1+tan^2 x)) ⇒ I_1 = ∫_0 ^(π/2)      (dx/(3 −(2/(1+tan^2 x))))  = ∫_0 ^(π/2)     ((1+tan^2 x)/(1+3tan^2 x))dx  = _(tanx =t)  ∫_0 ^(+∞)   ((1+t^2 )/(1+3t^2 )) (dt/(1+t^2 ))  =∫_0 ^∞   (dt/(1+3t^2 ))  =_(t(√3) =u)  ∫_0 ^∞     (1/(1+u^2 )) (du/(√3))  =(1/(√3)) [arctanu]_0 ^(+∞)   I_1  =(π/(2(√3)))  let find I_2 ?  I_2  = ∫_(π/2) ^π   (dx/(3 −2 cos^2 x))  =_(x = π −t)   ∫_(π/2) ^0    ((−dt)/(3 −2 cos^2 t)) =∫_0 ^(π/2)   (dt/(3−2cos^2 t))  =I_1   =(π/(2(√3)))  ⇒  I  = (π/(2(√3))) +(π/(2(√3))) = (π/(√3))  .  ★ I =(π/(√3)) ★

letputI=0πdx1+2sin2x=0πdx1+2(1cos2x)=0πdx32cos2x=0π2dx32cos2x+π2πdx32cos2x=I1+I2butweknewthat1+tan2t=1cos2tcos2x=11+tan2xI1=0π2dx321+tan2x=0π21+tan2x1+3tan2xdx=tanx=t0+1+t21+3t2dt1+t2=0dt1+3t2=t3=u011+u2du3=13[arctanu]0+I1=π23letfindI2?I2=π2πdx32cos2x=x=πtπ20dt32cos2t=0π2dt32cos2t=I1=π23I=π23+π23=π3.I=π3

Answered by sma3l2996 last updated on 11/Apr/18

I=∫_0 ^π (dx/(1+2sin^2 x))  t=tanx⇒dx=(dt/(1+t^2 ))  sin^2 x=(t^2 /(1+t^2 ))  I=∫_0 ^∞ (dt/(1+t^2 +2t^2 ))=∫_0 ^∞ (dt/(3t^2 +1))  u=(√3)x⇒dx=((√3)/3)du  I=((√3)/3)∫_0 ^∞ (du/(u^2 +1))=((√3)/3)[tan^(−1) (u)]_0 ^∞   I=((√3)/6)π

I=0πdx1+2sin2xt=tanxdx=dt1+t2sin2x=t21+t2I=0dt1+t2+2t2=0dt3t2+1u=3xdx=33duI=330duu2+1=33[tan1(u)]0I=36π

Commented by abdo imad last updated on 12/Apr/18

your answer is not corect sir sma3l...

youranswerisnotcorectsirsma3l...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com