All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33169 by abdo imad last updated on 11/Apr/18
findthevalueof∫0πdx1+2sin2x.
Commented by abdo imad last updated on 12/Apr/18
letputI=∫0πdx1+2sin2x=∫0πdx1+2(1−cos2x)=∫0πdx3−2cos2x=∫0π2dx3−2cos2x+∫π2πdx3−2cos2x=I1+I2butweknewthat1+tan2t=1cos2t⇒cos2x=11+tan2x⇒I1=∫0π2dx3−21+tan2x=∫0π21+tan2x1+3tan2xdx=tanx=t∫0+∞1+t21+3t2dt1+t2=∫0∞dt1+3t2=t3=u∫0∞11+u2du3=13[arctanu]0+∞I1=π23letfindI2?I2=∫π2πdx3−2cos2x=x=π−t∫π20−dt3−2cos2t=∫0π2dt3−2cos2t=I1=π23⇒I=π23+π23=π3.★I=π3★
Answered by sma3l2996 last updated on 11/Apr/18
I=∫0πdx1+2sin2xt=tanx⇒dx=dt1+t2sin2x=t21+t2I=∫0∞dt1+t2+2t2=∫0∞dt3t2+1u=3x⇒dx=33duI=33∫0∞duu2+1=33[tan−1(u)]0∞I=36π
youranswerisnotcorectsirsma3l...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com