Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33169 by abdo imad last updated on 11/Apr/18

find the value of  ∫_0 ^π     (dx/(1+2 sin^2 x))  .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}\:{sin}^{\mathrm{2}} {x}}\:\:. \\ $$

Commented by abdo imad last updated on 12/Apr/18

let put I  =∫_0 ^π    (dx/(1+2sin^2 x)) =∫_0 ^π    (dx/(1+2(1−cos^2 x)))  = ∫_0 ^π     (dx/(3 −2cos^2 x)) =∫_0 ^(π/2)    (dx/(3 −2 cos^2 x)) + ∫_(π/2) ^π    (dx/(3 −2cos^2 x))  =I_1  +I_2    but we knew that  1+tan^2 t =(1/(cos^2 t)) ⇒  cos^2 x = (1/(1+tan^2 x)) ⇒ I_1 = ∫_0 ^(π/2)      (dx/(3 −(2/(1+tan^2 x))))  = ∫_0 ^(π/2)     ((1+tan^2 x)/(1+3tan^2 x))dx  = _(tanx =t)  ∫_0 ^(+∞)   ((1+t^2 )/(1+3t^2 )) (dt/(1+t^2 ))  =∫_0 ^∞   (dt/(1+3t^2 ))  =_(t(√3) =u)  ∫_0 ^∞     (1/(1+u^2 )) (du/(√3))  =(1/(√3)) [arctanu]_0 ^(+∞)   I_1  =(π/(2(√3)))  let find I_2 ?  I_2  = ∫_(π/2) ^π   (dx/(3 −2 cos^2 x))  =_(x = π −t)   ∫_(π/2) ^0    ((−dt)/(3 −2 cos^2 t)) =∫_0 ^(π/2)   (dt/(3−2cos^2 t))  =I_1   =(π/(2(√3)))  ⇒  I  = (π/(2(√3))) +(π/(2(√3))) = (π/(√3))  .  ★ I =(π/(√3)) ★

$${let}\:{put}\:{I}\:\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}{sin}^{\mathrm{2}} {x}}\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right)} \\ $$$$=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{3}\:−\mathrm{2}{cos}^{\mathrm{2}} {x}}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{3}\:−\mathrm{2}\:{cos}^{\mathrm{2}} {x}}\:+\:\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{3}\:−\mathrm{2}{cos}^{\mathrm{2}} {x}} \\ $$$$={I}_{\mathrm{1}} \:+{I}_{\mathrm{2}} \:\:\:{but}\:{we}\:{knew}\:{that}\:\:\mathrm{1}+{tan}^{\mathrm{2}} {t}\:=\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {t}}\:\Rightarrow \\ $$$${cos}^{\mathrm{2}} {x}\:=\:\frac{\mathrm{1}}{\mathrm{1}+{tan}^{\mathrm{2}} {x}}\:\Rightarrow\:{I}_{\mathrm{1}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\mathrm{3}\:−\frac{\mathrm{2}}{\mathrm{1}+{tan}^{\mathrm{2}} {x}}} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{\mathrm{1}+{tan}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{3}{tan}^{\mathrm{2}} {x}}{dx}\:\:=\:_{{tanx}\:={t}} \:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{3}{t}^{\mathrm{2}} }\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\mathrm{1}+\mathrm{3}{t}^{\mathrm{2}} }\:\:=_{{t}\sqrt{\mathrm{3}}\:={u}} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\sqrt{\mathrm{3}}}\:\:=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\:\left[{arctanu}\right]_{\mathrm{0}} ^{+\infty} \\ $$$${I}_{\mathrm{1}} \:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:{let}\:{find}\:{I}_{\mathrm{2}} ? \\ $$$${I}_{\mathrm{2}} \:=\:\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:\:\frac{{dx}}{\mathrm{3}\:−\mathrm{2}\:{cos}^{\mathrm{2}} {x}}\:\:=_{{x}\:=\:\pi\:−{t}} \:\:\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \:\:\:\frac{−{dt}}{\mathrm{3}\:−\mathrm{2}\:{cos}^{\mathrm{2}} {t}}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{3}−\mathrm{2}{cos}^{\mathrm{2}} {t}} \\ $$$$={I}_{\mathrm{1}} \:\:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:\Rightarrow\:\:{I}\:\:=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:=\:\frac{\pi}{\sqrt{\mathrm{3}}}\:\:. \\ $$$$\bigstar\:{I}\:=\frac{\pi}{\sqrt{\mathrm{3}}}\:\bigstar \\ $$

Answered by sma3l2996 last updated on 11/Apr/18

I=∫_0 ^π (dx/(1+2sin^2 x))  t=tanx⇒dx=(dt/(1+t^2 ))  sin^2 x=(t^2 /(1+t^2 ))  I=∫_0 ^∞ (dt/(1+t^2 +2t^2 ))=∫_0 ^∞ (dt/(3t^2 +1))  u=(√3)x⇒dx=((√3)/3)du  I=((√3)/3)∫_0 ^∞ (du/(u^2 +1))=((√3)/3)[tan^(−1) (u)]_0 ^∞   I=((√3)/6)π

$${I}=\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{\mathrm{1}+\mathrm{2}{sin}^{\mathrm{2}} {x}} \\ $$$${t}={tanx}\Rightarrow{dx}=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${sin}^{\mathrm{2}} {x}=\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{3}{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$${u}=\sqrt{\mathrm{3}}{x}\Rightarrow{dx}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}{du} \\ $$$${I}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left[{tan}^{−\mathrm{1}} \left({u}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$${I}=\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\pi \\ $$

Commented by abdo imad last updated on 12/Apr/18

your answer is not corect sir sma3l...

$${your}\:{answer}\:{is}\:{not}\:{corect}\:{sir}\:{sma}\mathrm{3}{l}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com