All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33170 by prof Abdo imad last updated on 11/Apr/18
provethat∫0∞∣sinx∣xdxisdivergent.
Commented by prof Abdo imad last updated on 13/Apr/18
∫0∞∣sinx∣xdx=limn→+∞AnwithAn=∫0nπ∣sinx∣xdxbutAn=∑k=0n∫kπ(k+1)π∣sinx∣xdx=x=kπ+t∑k=0n∫0πsintkπ+tdtbut0⩽t⩽π⇒kπ⩽kπ+t⩽(k+1)π⇒1(k+1)π⩽1kπ+t⩽1kπ⇒sintkπ+t⩾sint(k+1)π∀t∈[0,π]⇒∫0πsintkπ+tdt⩾1(k+1)π∫0πsintdt=2(k+1)π⇒An⩾2π∑k=0n1k+1⇒An⩾2π∑k=1n+11k⇒An⩾2πHn+1n→+∞→+∞solimn→+∞An=+∞andtheintegralisdivergent.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com