Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33202 by prof Abdo imad last updated on 12/Apr/18

find the value of  ∫_(−∞) ^(+∞)      (dt/((1+t +t^2 )^2 )) .

$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}\:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:. \\ $$

Commented by prof Abdo imad last updated on 13/Apr/18

let put  I  = ∫_(−∞) ^(+∞)    (dt/((1+t+t^2 )^2 ))  we have  I = ∫_(−∞) ^(+∞)     (dt/(((t+(1/2))^2  +(3/4))^2 ))  .changement  t+(1/2) =((√3)/2) tanθ give  I = ∫_(−(π/2)) ^(π/2)       (1/(( (3/4)tan^2 θ +(3/4))^2 )) ((√3)/2)(1+tan^2 θ)dθ  =((√3)/2) .((16)/9)  ∫_(−(π/2)) ^(π/2)       (dθ/(1+tan^2 θ)) = ((16(√3))/9) ∫_0 ^(π/2)  cos^2 θ dθ  = ((16(√3))/9) ∫_0 ^(π/2)  ((1+cos(2θ))/2)dθ  =((8(√3))/9)  ∫_0 ^(π/2) (1 +cos(2θ))dθ  = ((4(√3) π)/9)  +  ((4(√3))/9) [ sin(2θ)]_0 ^(π/2)  = ((4π(√3))/9) +0 ⇒  I = ((4π(√3))/9)  .

$${let}\:{put}\:\:{I}\:\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:{we}\:{have} \\ $$$${I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dt}}{\left(\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }\:\:.{changement} \\ $$$${t}+\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{tan}\theta\:{give} \\ $$$${I}\:=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{\mathrm{1}}{\left(\:\frac{\mathrm{3}}{\mathrm{4}}{tan}^{\mathrm{2}} \theta\:+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:.\frac{\mathrm{16}}{\mathrm{9}}\:\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{d}\theta}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:=\:\frac{\mathrm{16}\sqrt{\mathrm{3}}}{\mathrm{9}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}} \theta\:{d}\theta \\ $$$$=\:\frac{\mathrm{16}\sqrt{\mathrm{3}}}{\mathrm{9}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}{d}\theta \\ $$$$=\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{9}}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}\:+{cos}\left(\mathrm{2}\theta\right)\right){d}\theta \\ $$$$=\:\frac{\mathrm{4}\sqrt{\mathrm{3}}\:\pi}{\mathrm{9}}\:\:+\:\:\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\:\left[\:{sin}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\:\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:+\mathrm{0}\:\Rightarrow \\ $$$${I}\:=\:\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com