All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33204 by prof Abdo imad last updated on 12/Apr/18
findthevalueof∫−∞+∞cos(ax)1+x+x2dx.
Commented by abdo imad last updated on 13/Apr/18
letputf(a)=∫−∞+∞cos(ax)1+x+x2dxf(a)=Re(∫−∞+∞eiax1+x+x2dx)letconsiderthecomplexfunctionφ(z)=eiaz1+z+z2thepolesofφarejandj−j=ei2π3andφ(z)=eiaz(z−j)(z−j−)∫−∞+∞φ(z)dz=2iπRes(φ,j)Res(φ,j)=eiajj−j−=eia(−12+i32)2iIm(j)=e−ia2.e−a322i32=e−a32i3(cos(a2)−isin(a2))⇒∫−∞+∞φ(z)dz=2iπe−a32i3(cos(a2)−isin(a2))⇒f(a)=2π3cos(a2).e−a32.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com