All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33259 by prof Abdo imad last updated on 14/Apr/18
findthevalueof∫0∞arctan(2x)a2+x2dxwitha≠0
Commented by prof Abdo imad last updated on 27/Apr/18
letputI=∫0∞arctan(2x)a2+x2dxifa>0ch.x=atgiveI=∫0∞arctan(2at)a2(1+t2)adt=1a∫0∞arctan(2at)1+t2dt⇒aI=∫0∞arctan(2at)1+t2dt=f(a)wehavef′(a)=∫0∞2t(1+4a2t2)(1+t2)dtletdecomposeF(t)=2t(1+4a2t2)(1+t2)=αt+bt2+1+ct+d4a2t2+1F(−t)=−F(t)⇒−αt+bt2+1+−ct+d4a2t2+1=−αt−bt2+1+−ct−d4a2t2+1⇒b=d=0⇒F(t)=αtt2+1+ct4a2t2+1limt→+∞tF(t)=0=α+c4a2⇒4a2α+c=0⇒c=−4a2α⇒F(t)=αtt2+1−4a2αt4a2t2+1F(1)=2(1+4a2)2=14a2+1=α2−4a2α4a2+1⇒1=12(4a2+1)α−4a2α=(2a2+12−4a2)α=(12−2a2)α=1−4a22α⇒α=21−4a2F(t)=21−4a2tt2+1−4a221−4a2t4a2t2+1F(t)=21−4a2tt2+1−8a21−4a2t4a2t2+1f′(a)=11−4a2∫0∞2tdtt2+1−8a21−4a2∫0∞tdt4a2t2+1but∫0∞tdt4a2t2+1=18a2∫0∞8a2t4a2t2+1f′(a)=11−4a2[ln(1+t24a2t2+1)]0+∞=11−4a2ln(14a2)=−ln(4a2)1−4a2⇒f(a)=∫0a−ln(4x2)1−4x2dx+λbutλ=f(0)=0⇒f(a)=−∫0a2ln(2x)1−4x2dx−f(a)=2x=t2∫02aln(t)1−t2dt2=∫02aln(t)1−t2dtif0<2a<1⇔0<a<12∫02aln(t)1−t2dt=∫02a(∑n=0∞t2n)ln(t)dt=∑n=0∞∫02at2nln(t)dt=∑n=0∞AnAn=∫02at2nln(t)dtbecalculatedbyrecurrence....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com