Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33259 by prof Abdo imad last updated on 14/Apr/18

find the value of  ∫_0 ^∞    ((arctan(2x))/(a^2  +x^2 )) dx with a≠0

findthevalueof0arctan(2x)a2+x2dxwitha0

Commented by prof Abdo imad last updated on 27/Apr/18

let put  I= ∫_0 ^∞   ((arctan(2x))/(a^2  +x^2 ))dx  if a>0  ch.x=at give   I = ∫_0 ^∞   ((arctan(2at))/(a^2 (1+t^2 ))) adt = (1/a)∫_0 ^∞    ((arctan(2at))/(1+t^2 ))dt  ⇒aI = ∫_0 ^∞   ((arctan(2at))/(1+t^2 ))dt =f(a) we have  f^′ (a) = ∫_0 ^∞         ((2t)/((1+4a^2 t^2 )(1+t^2 )))dt  let decompose  F(t) =  ((2t)/((1+4a^2 t^2 )(1+t^2 ))) = ((αt +b)/(t^2 +1)) + ((ct +d)/(4a^2 t^2  +1))  F(−t)=−F(t) ⇒((−αt+b)/(t^2 +1)) +((−ct +d)/(4a^2 t^2 +1))  =((−αt−b)/(t^2  +1)) +((−ct −d)/(4a^2 t^2  +1)) ⇒ b=d=0 ⇒  F(t)= ((αt)/(t^2 +1))  +((ct)/(4a^2 t^2  +1))  lim_(t→+∞) t F(t) =0 =α +(c/(4a^2 )) ⇒4a^2 α +c =0 ⇒  c=−4a^2 α ⇒F(t)= ((αt)/(t^2 +1)) −4a^2   ((αt)/(4a^2 t^2 +1))  F(1) = (2/((1+4a^2 )2)) =(1/(4a^2 +1)) = (α/2) −((4a^2 α)/(4a^2 +1)) ⇒  1 =(1/2)(4a^2 +1)α −4a^2 α =(2a^2  +(1/2)−4a^2 )α  =((1/2) −2a^2 )α =((1−4a^2 )/2) α ⇒α= (2/(1−4a^2 ))  F(t) =(2/(1−4a^2 )) (t/(t^2  +1)) −4a^2  (2/(1−4a^2 ))  (t/(4a^2 t^2  +1))  F(t) = (2/(1−4a^2 )) (t/(t^2 +1)) −((8a^2 )/(1−4a^2 ))  (t/(4a^2 t^2 +1))  f^′ (a) = (1/(1−4a^2 )) ∫_0 ^∞  ((2tdt)/(t^2  +1))  −((8a^2 )/(1−4a^2 ))∫_0 ^∞  ((tdt)/(4a^2 t^2  +1))  but  ∫_0 ^∞   ((tdt)/(4a^2 t^2  +1)) =(1/(8a^2 ))∫_0 ^∞  ((8a^2 t)/(4a^2 t^2  +1))  f^′ (a)= (1/(1−4a^2 ))[ln(((1+t^2 )/(4a^2 t^2 +1)))]_0 ^(+∞)  =(1/(1−4a^2 ))ln((1/(4a^2 )))  = ((−ln(4a^2 ))/(1−4a^2 )) ⇒f(a) = ∫_0 ^a   ((−ln(4x^2 ))/(1−4x^2 ))dx +λ  but λ =f(0)=0 ⇒f(a) =−∫_0 ^(a ) ((2ln(2x))/(1−4x^2 ))dx  −f(a)=_(2x=t)   2 ∫_0 ^(2a)    ((ln(t))/(1−t^2 )) (dt/2) = ∫_0 ^(2a)   ((ln(t))/(1−t^2 ))dt  if0 <2a<1 ⇔ 0<a<(1/2)  ∫_0 ^(2a)   ((ln(t))/(1−t^2 ))dt = ∫_0 ^(2a) (Σ_(n=0) ^∞  t^(2n) )ln(t)dt  = Σ_(n=0) ^∞   ∫_0 ^(2a)  t^(2n)  ln(t)dt  =Σ_(n=0) ^∞  A_n   A_n =∫_0 ^(2a)  t^(2n) ln(t)dt  be calculated by recurrence  ....be continued....

letputI=0arctan(2x)a2+x2dxifa>0ch.x=atgiveI=0arctan(2at)a2(1+t2)adt=1a0arctan(2at)1+t2dtaI=0arctan(2at)1+t2dt=f(a)wehavef(a)=02t(1+4a2t2)(1+t2)dtletdecomposeF(t)=2t(1+4a2t2)(1+t2)=αt+bt2+1+ct+d4a2t2+1F(t)=F(t)αt+bt2+1+ct+d4a2t2+1=αtbt2+1+ctd4a2t2+1b=d=0F(t)=αtt2+1+ct4a2t2+1limt+tF(t)=0=α+c4a24a2α+c=0c=4a2αF(t)=αtt2+14a2αt4a2t2+1F(1)=2(1+4a2)2=14a2+1=α24a2α4a2+11=12(4a2+1)α4a2α=(2a2+124a2)α=(122a2)α=14a22αα=214a2F(t)=214a2tt2+14a2214a2t4a2t2+1F(t)=214a2tt2+18a214a2t4a2t2+1f(a)=114a202tdtt2+18a214a20tdt4a2t2+1but0tdt4a2t2+1=18a208a2t4a2t2+1f(a)=114a2[ln(1+t24a2t2+1)]0+=114a2ln(14a2)=ln(4a2)14a2f(a)=0aln(4x2)14x2dx+λbutλ=f(0)=0f(a)=0a2ln(2x)14x2dxf(a)=2x=t202aln(t)1t2dt2=02aln(t)1t2dtif0<2a<10<a<1202aln(t)1t2dt=02a(n=0t2n)ln(t)dt=n=002at2nln(t)dt=n=0AnAn=02at2nln(t)dtbecalculatedbyrecurrence....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com