Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33331 by prof Abdo imad last updated on 14/Apr/18

calcilate  ∫_0 ^1     (dx/((1+x^2 )^3 ))

calcilate01dx(1+x2)3

Commented by math khazana by abdo last updated on 19/Apr/18

let put  I = ∫_0 ^1     (dx/((1+x^2 )^3 ))  changement x=tantgive  I  = ∫_0 ^(π/4)       (1/((1+tan^2 t)^3 )) (1+tan^2 t)dt  = ∫_0 ^( (π/4))     (dt/((1+tan^2 t)^2 )) =∫_0 ^(π/4)   cos^4 t dt  = ∫_0 ^(π/4)  (1/4)(1+cos(2t))^2 dt  = (1/4) ∫_0 ^(π/4)  (1+2cos(2t) +cos^2 (2t))dt  = (π/(16)) +(1/2) ∫_0 ^(π/4)   cos(2t)  +(1/8) ∫_0 ^(π/4) ( 1+cos(4t))dt  = (π/(16))  +(1/4)[sin(2t)]_0 ^(π/4)   + (π/(32))  +(1/(32))[ sin(4t)]_0 ^(π/4)   = ((3π)/(32))   +(1/4) +0 ⇒  I = (1/4) +((3π)/(32)) .

letputI=01dx(1+x2)3changementx=tantgiveI=0π41(1+tan2t)3(1+tan2t)dt=0π4dt(1+tan2t)2=0π4cos4tdt=0π414(1+cos(2t))2dt=140π4(1+2cos(2t)+cos2(2t))dt=π16+120π4cos(2t)+180π4(1+cos(4t))dt=π16+14[sin(2t)]0π4+π32+132[sin(4t)]0π4=3π32+14+0I=14+3π32.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com