All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33331 by prof Abdo imad last updated on 14/Apr/18
calcilate∫01dx(1+x2)3
Commented by math khazana by abdo last updated on 19/Apr/18
letputI=∫01dx(1+x2)3changementx=tantgiveI=∫0π41(1+tan2t)3(1+tan2t)dt=∫0π4dt(1+tan2t)2=∫0π4cos4tdt=∫0π414(1+cos(2t))2dt=14∫0π4(1+2cos(2t)+cos2(2t))dt=π16+12∫0π4cos(2t)+18∫0π4(1+cos(4t))dt=π16+14[sin(2t)]0π4+π32+132[sin(4t)]0π4=3π32+14+0⇒I=14+3π32.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com