Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33343 by prof Abdo imad last updated on 14/Apr/18

prove that ∀ α ∈]1,+∞[  lim_(n→∞)   ∫_0 ^n  (1+(x/n))^n  e^(−αx) dx = (1/(α−1)) .

$$\left.{prove}\:{that}\:\forall\:\alpha\:\in\right]\mathrm{1},+\infty\left[\right. \\ $$$${lim}_{{n}\rightarrow\infty} \:\:\int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}+\frac{{x}}{{n}}\right)^{{n}} \:{e}^{−\alpha{x}} {dx}\:=\:\frac{\mathrm{1}}{\alpha−\mathrm{1}}\:. \\ $$

Commented by abdo imad last updated on 17/Apr/18

let put I_n = ∫_0 ^n  (1+(x/n))^n  e^(−αx) dx = ∫_R f_n (x)dx  with  f_n (x) = (1+(x/n))^n  e^(−αx)  χ_([0,n[) (x)dx  we have  f_n (x)→^(c.s)   f(x) = e^((1−α)x)  if x≥0 and f(x)=0 if x<0   but we have (1+(x/n))^n =e^(nln(1+(x/n)))    but ln(1+(x/n))≤(x/n) ⇒  nln(1+(x/n)) ≤x  ⇒ (1+(x/n))^n  e^(−αx)  ≤ g(x)=_ e^((1−α)x)    theorem of convergence dominee give  ∫_R f_n (x)dx _(n→∞) → ∫_0 ^∞   e^((1−α)x) dx =(1/(1−α))[ e^((1−α)x) ]_0 ^(+∞)   =((−1)/(1−α)) = (1/(α−1)) ⇒ lim_(n→∞)  I_n   = (1/(1−α))  .

$${let}\:{put}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}+\frac{{x}}{{n}}\right)^{{n}} \:{e}^{−\alpha{x}} {dx}\:=\:\int_{{R}} {f}_{{n}} \left({x}\right){dx}\:\:{with} \\ $$$${f}_{{n}} \left({x}\right)\:=\:\left(\mathrm{1}+\frac{{x}}{{n}}\right)^{{n}} \:{e}^{−\alpha{x}} \:\chi_{\left[\mathrm{0},{n}\left[\right.\right.} \left({x}\right){dx}\:\:{we}\:{have} \\ $$$${f}_{{n}} \left({x}\right)\rightarrow^{{c}.{s}} \:\:{f}\left({x}\right)\:=\:{e}^{\left(\mathrm{1}−\alpha\right){x}} \:{if}\:{x}\geqslant\mathrm{0}\:{and}\:{f}\left({x}\right)=\mathrm{0}\:{if}\:{x}<\mathrm{0}\: \\ $$$${but}\:{we}\:{have}\:\left(\mathrm{1}+\frac{{x}}{{n}}\right)^{{n}} ={e}^{{nln}\left(\mathrm{1}+\frac{{x}}{{n}}\right)} \:\:\:{but}\:{ln}\left(\mathrm{1}+\frac{{x}}{{n}}\right)\leqslant\frac{{x}}{{n}}\:\Rightarrow \\ $$$${nln}\left(\mathrm{1}+\frac{{x}}{{n}}\right)\:\leqslant{x}\:\:\Rightarrow\:\left(\mathrm{1}+\frac{{x}}{{n}}\right)^{{n}} \:{e}^{−\alpha{x}} \:\leqslant\:{g}\left({x}\right)=_{} {e}^{\left(\mathrm{1}−\alpha\right){x}} \: \\ $$$${theorem}\:{of}\:{convergence}\:{dominee}\:{give} \\ $$$$\int_{{R}} {f}_{{n}} \left({x}\right){dx}\:_{{n}\rightarrow\infty} \rightarrow\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left(\mathrm{1}−\alpha\right){x}} {dx}\:=\frac{\mathrm{1}}{\mathrm{1}−\alpha}\left[\:{e}^{\left(\mathrm{1}−\alpha\right){x}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{1}−\alpha}\:=\:\frac{\mathrm{1}}{\alpha−\mathrm{1}}\:\Rightarrow\:{lim}_{{n}\rightarrow\infty} \:{I}_{{n}} \:\:=\:\frac{\mathrm{1}}{\mathrm{1}−\alpha}\:\:. \\ $$

Commented by prof Abdo imad last updated on 17/Apr/18

lim I_n = (1/(α−1)) .

$${lim}\:{I}_{{n}} =\:\frac{\mathrm{1}}{\alpha−\mathrm{1}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com