All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33349 by caravan msup abdo. last updated on 14/Apr/18
provethat∫0∞x(x−ln(ex−1))dx=∑n=1∞1n3
Commented by math khazana by abdo last updated on 18/Apr/18
letputI=∫0∞x(x−ln(ex−1))dxI=∫0∞x(x−ln(ex(1−e−x))dx=−∫0∞xln(1−e−x)dxbutwehave11−u=∑n=0∞un⇒−ln(1−u)=∑n=0∞un+1n+1=∑n=1∞unn⇒−ln(1−e−x)=∑n=1∞e−nxnI=∫0∞(∑n=1∞e−nxn)xdx=∑n=1∞1n∫0∞xe−nxdx∫0∞xe−nxdx=nx=t∫0∞tne−tdtn=1n2∫0∞te−tdtandbyparts∫0∞te−tdt=[−te−t]0+∞+∫0∞e−tdt=[−e−t]0+∞=1⇒I=∑n=1∞1n3.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com