Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33349 by caravan msup abdo. last updated on 14/Apr/18

prove that   ∫_0 ^∞  x(x−ln(e^x −1))dx=Σ_(n=1) ^∞  (1/n^3 )

$${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{x}\left({x}−{ln}\left({e}^{{x}} −\mathrm{1}\right)\right){dx}=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$

Commented by math khazana by abdo last updated on 18/Apr/18

let put I = ∫_0 ^∞   x(x −ln(e^x  −1))dx  I = ∫_0 ^∞   x( x −ln(e^x (1−e^(−x) ))dx  = −∫_0 ^∞   x  ln(1−e^(−x) )dx  but we have  (1/(1−u))= Σ_(n=0) ^∞  u^n   ⇒ −ln(1−u)  =Σ_(n=0) ^∞  (u^(n+1) /(n+1))  = Σ_(n=1) ^∞  (u^n /n) ⇒ −ln(1−e^(−x) ) = Σ_(n=1) ^∞   (e^(−nx) /n)  I = ∫_0 ^∞ (Σ_(n=1) ^∞   (e^(−nx) /n))x dx  = Σ_(n=1) ^∞    (1/n)∫_0 ^∞   x e^(−nx)  dx      ∫_0 ^∞  x e^(−nx)  dx =_(nx =t)   ∫_0 ^∞  (t/n) e^(−t)   (dt/n)  =(1/n^2 ) ∫_0 ^∞  t e^(−t) dt   and by parts  ∫_0 ^∞   t e^(−t) dt = [−t e^(−t) ]_0 ^(+∞)  +∫_0 ^∞  e^(−t) dt  =[ −e^(−t) ]_0 ^(+∞)  =1  ⇒  I  =  Σ_(n=1) ^∞ (1/n^3 )  .

$${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{x}\left({x}\:−{ln}\left({e}^{{x}} \:−\mathrm{1}\right)\right){dx} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{x}\left(\:{x}\:−{ln}\left({e}^{{x}} \left(\mathrm{1}−{e}^{−{x}} \right)\right){dx}\right. \\ $$$$=\:−\int_{\mathrm{0}} ^{\infty} \:\:{x}\:\:{ln}\left(\mathrm{1}−{e}^{−{x}} \right){dx}\:\:{but}\:{we}\:{have} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{u}}=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}^{{n}} \:\:\Rightarrow\:−{ln}\left(\mathrm{1}−{u}\right)\:\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{u}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$$$=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}^{{n}} }{{n}}\:\Rightarrow\:−{ln}\left(\mathrm{1}−{e}^{−{x}} \right)\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{−{nx}} }{{n}} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{−{nx}} }{{n}}\right){x}\:{dx} \\ $$$$=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} \:\:{x}\:{e}^{−{nx}} \:{dx}\:\:\:\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{x}\:{e}^{−{nx}} \:{dx}\:=_{{nx}\:={t}} \:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{t}}{{n}}\:{e}^{−{t}} \:\:\frac{{dt}}{{n}} \\ $$$$=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{−{t}} {dt}\:\:\:{and}\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{t}\:{e}^{−{t}} {dt}\:=\:\left[−{t}\:{e}^{−{t}} \right]_{\mathrm{0}} ^{+\infty} \:+\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} {dt} \\ $$$$=\left[\:−{e}^{−{t}} \right]_{\mathrm{0}} ^{+\infty} \:=\mathrm{1}\:\:\Rightarrow\:\:{I}\:\:=\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com