All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33350 by caravan msup abdo. last updated on 14/Apr/18
provethat∫0∞cos(αx)chxdx=2∑n=0∞(−1)n2n+1(2n+1)2+α2.
Commented by abdo imad last updated on 17/Apr/18
letputI=∫0∞cos(αx)chxdxI=2∫0∞cos(αx)ex+e−xdx=2∫0∞e−xcos(αx)1+e−2xdx=2∫0∞(∑n=0∞(−1)ne−2nx).e−xcos(αx)dx=2∑n=0∞(−1)n∫0∞e−(2n+1)xcos(αx)dxbutAn=∫0∞e−(2n+1)xcos(αx)dx=Re(∫0∞e−(2n+1)xe−iαxdx)=Re(∫0∞e−(2n+1+iα)xdx)butwehave∫0∞e−(2n+1+iα)xdx=[−12n+1+iαe−(2n+1+iα)]0+∞=12n+1+iα=2n+1−iα(2n+1)2+α2⇒An=2n+1(2n+1)2+α2⇒I=2∑n=0∞(−1)n(2n+1)(2n+1)2+α2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com