Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33351 by caravan msup abdo. last updated on 14/Apr/18

prove that  ∫_0 ^1  (((−lnx)^p )/(1+x^2 )) =p! Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^(p+1) ))  p integr.

$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(−{lnx}\right)^{{p}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:={p}!\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{p}+\mathrm{1}} } \\ $$$${p}\:{integr}. \\ $$

Commented by math khazana by abdo last updated on 19/Apr/18

let put A_p = ∫_0 ^1    (((−lnx)^p )/(1+x^2 ))dx  A_p = (−1)^p   ∫_0 ^1    (((lnx)^p )/(1+x^2 ))dx  =(−1)^p  ∫_0 ^1 ( Σ_(n=0) ^∞ (−1)^n  x^(2n) )(lnx)^p dx  = Σ_(n=0) ^∞  (−1)^(n+p)   ∫_0 ^1    x^(2n)  (lnx)^p  dx  let find  I_(n,p) = ∫_0 ^1   x^n  (lnx)^p dx   by parts  I_(n,p) = [(1/(n+1)) x^(n+1) (lnx)^p  ]_0 ^1   − ∫_0 ^1    (1/(n+1))x^(n+1)   (p/x) (lnx)^(p−1)   =−(p/(n+1)) ∫_0 ^1   x^n  (lnx)^(p−1)  dx =((−p)/(n+1)) I_(n,p−1)  ⇒  I_(n,p)   = (((−p)(−(p−1)))/((n+1)^2 )) I_(n,p−2)  =....= (((−1)^p p!)/((n+1)^p ))  I_(n,0)   I_(n,0) = ∫_0 ^1  x^n  dx = (1/(n+1)) ⇒ I_(n,p)  = (((−1)^p  p!)/((n+1)^(p+1) ))  ⇒  ∫_0 ^1  x^(2n) (lnx)^p dx = (((−1)^p  p!)/((2n+1)^(p+1) ))  and  A_p  =Σ_(n=0) ^∞  (−1)^(n+p)   (((−1)^p  p!)/((2n+1)^(p+1) ))  =p! Σ_(n=0) ^∞    (((−1)^n )/((2n+1)^(p+1) )) .

$${let}\:{put}\:{A}_{{p}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\left(−{lnx}\right)^{{p}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${A}_{{p}} =\:\left(−\mathrm{1}\right)^{{p}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\left({lnx}\right)^{{p}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\left(−\mathrm{1}\right)^{{p}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} \right)\left({lnx}\right)^{{p}} {dx} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}+{p}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{x}^{\mathrm{2}{n}} \:\left({lnx}\right)^{{p}} \:{dx}\:\:{let}\:{find} \\ $$$${I}_{{n},{p}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \:\left({lnx}\right)^{{p}} {dx}\:\:\:{by}\:{parts} \\ $$$${I}_{{n},{p}} =\:\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}\:{x}^{{n}+\mathrm{1}} \left({lnx}\right)^{{p}} \:\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \:\:\frac{{p}}{{x}}\:\left({lnx}\right)^{{p}−\mathrm{1}} \\ $$$$=−\frac{{p}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \:\left({lnx}\right)^{{p}−\mathrm{1}} \:{dx}\:=\frac{−{p}}{{n}+\mathrm{1}}\:{I}_{{n},{p}−\mathrm{1}} \:\Rightarrow \\ $$$${I}_{{n},{p}} \:\:=\:\frac{\left(−{p}\right)\left(−\left({p}−\mathrm{1}\right)\right)}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:{I}_{{n},{p}−\mathrm{2}} \:=....=\:\frac{\left(−\mathrm{1}\right)^{{p}} {p}!}{\left({n}+\mathrm{1}\right)^{{p}} }\:\:{I}_{{n},\mathrm{0}} \\ $$$${I}_{{n},\mathrm{0}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{dx}\:=\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\Rightarrow\:{I}_{{n},{p}} \:=\:\frac{\left(−\mathrm{1}\right)^{{p}} \:{p}!}{\left({n}+\mathrm{1}\right)^{{p}+\mathrm{1}} }\:\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{n}} \left({lnx}\right)^{{p}} {dx}\:=\:\frac{\left(−\mathrm{1}\right)^{{p}} \:{p}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{p}+\mathrm{1}} }\:\:{and} \\ $$$${A}_{{p}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}+{p}} \:\:\frac{\left(−\mathrm{1}\right)^{{p}} \:{p}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{p}+\mathrm{1}} } \\ $$$$={p}!\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}} }{\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)^{\boldsymbol{{p}}+\mathrm{1}} }\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com