Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33362 by prof Abdo imad last updated on 15/Apr/18

calculate by residus theorem  I = ∫_(−∞) ^(+∞)    ((cos(πx))/((1+x +x^2 )))dx .

$${calculate}\:{by}\:{residus}\:{theorem} \\ $$$${I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\pi{x}\right)}{\left(\mathrm{1}+{x}\:+{x}^{\mathrm{2}} \right)}{dx}\:. \\ $$

Commented by prof Abdo imad last updated on 15/Apr/18

I = Re( ∫_(−∞) ^(+∞)     (e^(iπx) /(1+x+x^2 ))) let introduce the  complexfunction ϕ(z)= (e^(iπz) /(1+z +z^2 )) .the poles of  ϕ are j and j^−    ( j =e^(i((2π)/3)) )  ∫_(−∞) ^(+∞)    (e^(iπz) /(1+z+z^2 ))dz =2iπ Res(ϕ,j)  ϕ(z) = (e^(iπz) /((z−j)(z−j^− ))) ⇒Res(ϕ,j) = (e^(iπj) /(j−j^− ))  = (e^(iπ(−(1/2)+i((√3)/2))) /(2i((√3)/2))) = ((e^(−π((√3)/2))   e^(−i(π/2)) )/(i(√3))) = −i (e^(−π((√3)/2)) /(i(√3)))  = −(e^(−π((√3)/2)) /(√3)) ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz = −2iπ (e^(−π((√3)/2)) /(√3))  I =Re( ∫_(−∞) ^(+∞)  ϕ(z)dz) =0 also we have  ∫_(−∞) ^(+∞)   ((sin(πx))/(1+x+x^2 ))dx = ((−2π)/(√3)) e^(−π((√3)/2))  .

$${I}\:=\:{Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{e}^{{i}\pi{x}} }{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\right)\:{let}\:{introduce}\:{the} \\ $$$${complexfunction}\:\varphi\left({z}\right)=\:\frac{{e}^{{i}\pi{z}} }{\mathrm{1}+{z}\:+{z}^{\mathrm{2}} }\:.{the}\:{poles}\:{of} \\ $$$$\varphi\:{are}\:{j}\:{and}\:\overset{−} {{j}}\:\:\:\left(\:{j}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \right) \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{i}\pi{z}} }{\mathrm{1}+{z}+{z}^{\mathrm{2}} }{dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{j}\right) \\ $$$$\varphi\left({z}\right)\:=\:\frac{{e}^{{i}\pi{z}} }{\left({z}−{j}\right)\left({z}−\overset{−} {{j}}\right)}\:\Rightarrow{Res}\left(\varphi,{j}\right)\:=\:\frac{{e}^{{i}\pi{j}} }{{j}−\overset{−} {{j}}} \\ $$$$=\:\frac{{e}^{{i}\pi\left(−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} }{\mathrm{2}{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\:=\:\frac{{e}^{−\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \:\:{e}^{−{i}\frac{\pi}{\mathrm{2}}} }{{i}\sqrt{\mathrm{3}}}\:=\:−{i}\:\frac{{e}^{−\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} }{{i}\sqrt{\mathrm{3}}} \\ $$$$=\:−\frac{{e}^{−\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} }{\sqrt{\mathrm{3}}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\:−\mathrm{2}{i}\pi\:\frac{{e}^{−\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} }{\sqrt{\mathrm{3}}} \\ $$$${I}\:={Re}\left(\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\right)\:=\mathrm{0}\:{also}\:{we}\:{have} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx}\:=\:\frac{−\mathrm{2}\pi}{\sqrt{\mathrm{3}}}\:{e}^{−\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com