Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 33462 by NECx last updated on 17/Apr/18

using PMI show that ∀ n≥2 the  number 5^n  ends with the digits 25

usingPMIshowthatn2thenumber5nendswiththedigits25

Answered by MJS last updated on 17/Apr/18

base:  n=2  5^2 =25    if true for n ⇒ true for n+1  i, j ∈ N  5^n =100i+25 ⇒ 5^(n+1) =100j+25  5^(n+1) =(100i+25)×5=500i+125=  =500i+100+25=100j+25 with  j=5i+1  this holds for n≥2

base:n=252=25iftrueforntrueforn+1i,jN5n=100i+255n+1=100j+255n+1=(100i+25)×5=500i+125==500i+100+25=100j+25withj=5i+1thisholdsforn2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com