Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 33466 by mondodotto@gmail.com last updated on 17/Apr/18

 if tan𝛃=(r/(√s)) and sin𝛃=((√s)/r)   show that cos𝛃=(√(r^2 +s))

iftanβ=rsandsinβ=srshowthatcosβ=r2+s

Commented by MJS last updated on 17/Apr/18

cos β=(√(1−sin^2  β))=((√(r^2 −s))/(∣r∣))  (√(r^2 +s))=((√(r^2 −s))/(∣r∣)) ⇒ s=r^2 ((1−r^2 )/(1+r^2 ))    cos β=((sin β)/(tan β))  (√(r^2 +s))=(s/r^2 ) ⇒ s=(r^3 /2)(r±(√(4+r^2 )))    r^2 ((1−r^2 )/(1+r^2 ))=(r^3 /2)(r±(√(4+r^2 ))) ⇒   ⇒ r=(√(−2+(√5))); s=(7/2)−(3/2)(√5)  β≈51.83°  it′s only true in this singular case

cosβ=1sin2β=r2srr2+s=r2srs=r21r21+r2cosβ=sinβtanβr2+s=sr2s=r32(r±4+r2)r21r21+r2=r32(r±4+r2)r=2+5;s=72325β51.83°itsonlytrueinthissingularcase

Commented by mondodotto@gmail.com last updated on 17/Apr/18

thanx for your help sir

thanxforyourhelpsir

Answered by Rasheed.Sindhi last updated on 17/Apr/18

tan𝛃=((sin𝛃)/(cos𝛃))    (r/(√s))=(((√s)/r)/(cos𝛃))    cos𝛃=(((√s)/r)/(r/(√s)))=((√s)/r)×((√s)/r)=(s/r^2 )≠(√(r^2 +s)) in general.

tanβ=sinβcosβrs=srcosβcosβ=srrs=sr×sr=sr2r2+singeneral.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com