All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 33594 by abdo imad last updated on 19/Apr/18
calculatelimx→1−1(1−x)α(arcsinx−π2).
Commented by abdo imad last updated on 24/Apr/18
letusethech.1−x=t⇒limx→1−1(1−x)α(arcsinx−π2)=limt→0+1tα(arcsin(1−t)−π2)=limt→0+arcsin(1−t)−π2tαletusehospitaltheoremu(t)=arcsin(1−t)−π2andv(t)=tαu′(t)=−11−(1−t)2andv′(t)=αtα−1⇒u′(t)=−11−t2+2t−1=−12t−t2ifα>1limαtα−1=0+limt→0+u′(t)=−∞⇒limt→o+arcsin(1−t)−π2tα=−∞if0<α<1wedothech.α=1λwithλ>1⇒limt→0+arcsin(1−t)−π2tα=limt→0+arcsin(1−t)−π2t1λ=limt→0+−11λt1λ−12t−t2=limt→0+−λ2t−t2t1−1λforthatwemustcalculateu″(t)andv″(t)...becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com