Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 33594 by abdo imad last updated on 19/Apr/18

calculate  lim_(x→1^− )         (1/((1−x)^α ))(arcsinx −(π/2)) .

calculatelimx11(1x)α(arcsinxπ2).

Commented by abdo imad last updated on 24/Apr/18

let use the ch. 1−x =t ⇒lim_(x→1^− )     (1/((1−x)^α ))( arcsinx −(π/2))  =lim_(t→0^+ )    (1/t^α )(arcsin(1−t) −(π/2))  =lim_(t→0^+ )    ((arcsin(1−t)−(π/2))/t^α )  let use hospital theorem  u(t) =arcsin(1−t)−(π/2) and v(t)= t^α   u^′ (t) =((−1)/(√(1−(1−t)^2 )))  and v^′ (t) =α t^(α−1) ⇒  u^′ (t) =((−1)/(√(1−t^2  +2t −1))) =−(1/(√(2t −t^2 ))) if α>1 lim α t^(α−1)  =0^+   lim_(t→0^+ )    u^′ (t) =−∞ ⇒lim _(t→o^+ )    ((arcsin(1−t)−(π/2))/t^α ) =−∞  if 0<α<1 we do the ch.α =(1/λ) with λ>1⇒  lim_(t→0^+ )     ((arcsin(1−t)−(π/2))/t^α ) =lim_(t→0^+ )   ((arcsin(1−t)−(π/2))/t^(1/λ) )  =lim_(t→0^+ )       ((−1)/((1/λ)t^((1/λ)−1) (√(2t−t^2 )))) =lim_(t→0^+ )    ((−λ)/(√(2t−t^2 ))) t^(1−(1/λ))  for  that we must calculate u^(′′) (t) and v^(′′) (t)...be continued....

letusethech.1x=tlimx11(1x)α(arcsinxπ2)=limt0+1tα(arcsin(1t)π2)=limt0+arcsin(1t)π2tαletusehospitaltheoremu(t)=arcsin(1t)π2andv(t)=tαu(t)=11(1t)2andv(t)=αtα1u(t)=11t2+2t1=12tt2ifα>1limαtα1=0+limt0+u(t)=limto+arcsin(1t)π2tα=if0<α<1wedothech.α=1λwithλ>1limt0+arcsin(1t)π2tα=limt0+arcsin(1t)π2t1λ=limt0+11λt1λ12tt2=limt0+λ2tt2t11λforthatwemustcalculateu(t)andv(t)...becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com