Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33649 by rahul 19 last updated on 21/Apr/18

Consider f:R^+ →R such that  f(3)=1 for a∈R^+  and   f(x).f(y) + f((3/x)).f((3/y)) = 2f(xy)  ∀ x,y ∈ R^+ . Then find f(x) ?

$${Consider}\:{f}:{R}^{+} \rightarrow{R}\:{such}\:{that} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{1}\:{for}\:{a}\in{R}^{+} \:{and}\: \\ $$$${f}\left({x}\right).{f}\left({y}\right)\:+\:{f}\left(\frac{\mathrm{3}}{{x}}\right).{f}\left(\frac{\mathrm{3}}{{y}}\right)\:=\:\mathrm{2}{f}\left({xy}\right) \\ $$$$\forall\:{x},{y}\:\in\:{R}^{+} .\:{Then}\:{find}\:{f}\left({x}\right)\:? \\ $$

Commented by rahul 19 last updated on 21/Apr/18

prof Abdo imad , MJS sir  pls help .

$${prof}\:\boldsymbol{{A}}{bdo}\:{imad}\:,\:{MJS}\:{sir}\:\:{pls}\:{help}\:. \\ $$

Commented by math khazana by abdo last updated on 21/Apr/18

⇒(f(1))^2  +(f(3))^2  =2f(1)⇒(f(1))^2  −2f(1) +1 =0  ⇒ (f(1)−1)^2 =0 ⇒ f(1)=1 for y=(1/x) ⇒  f(x)f((1/x))  +f((3/x)).f(3x) =2  let x→+∞  f(+∞)f(0) +f(+∞)f(0) =2 ⇒ f(0) f(+∞)=1  this condition prove that f(x)=c(constant)  ∀ x ∈R^+   f(x)f((1/x)) +f((3/x))f(3x) =2 ⇒  c^2  +c^2  =2 ⇒ 2c^2  =2 ⇒ c =+^− 1  but f(1)=f(3) =1  ⇒ f(x)=1 ∀x ∈R^+

$$\Rightarrow\left({f}\left(\mathrm{1}\right)\right)^{\mathrm{2}} \:+\left({f}\left(\mathrm{3}\right)\right)^{\mathrm{2}} \:=\mathrm{2}{f}\left(\mathrm{1}\right)\Rightarrow\left({f}\left(\mathrm{1}\right)\right)^{\mathrm{2}} \:−\mathrm{2}{f}\left(\mathrm{1}\right)\:+\mathrm{1}\:=\mathrm{0} \\ $$$$\Rightarrow\:\left({f}\left(\mathrm{1}\right)−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:{f}\left(\mathrm{1}\right)=\mathrm{1}\:{for}\:{y}=\frac{\mathrm{1}}{{x}}\:\Rightarrow \\ $$$${f}\left({x}\right){f}\left(\frac{\mathrm{1}}{{x}}\right)\:\:+{f}\left(\frac{\mathrm{3}}{{x}}\right).{f}\left(\mathrm{3}{x}\right)\:=\mathrm{2}\:\:{let}\:{x}\rightarrow+\infty \\ $$$${f}\left(+\infty\right){f}\left(\mathrm{0}\right)\:+{f}\left(+\infty\right){f}\left(\mathrm{0}\right)\:=\mathrm{2}\:\Rightarrow\:{f}\left(\mathrm{0}\right)\:{f}\left(+\infty\right)=\mathrm{1} \\ $$$${this}\:{condition}\:{prove}\:{that}\:{f}\left({x}\right)={c}\left({constant}\right) \\ $$$$\forall\:{x}\:\in{R}^{+} \:\:{f}\left({x}\right){f}\left(\frac{\mathrm{1}}{{x}}\right)\:+{f}\left(\frac{\mathrm{3}}{{x}}\right){f}\left(\mathrm{3}{x}\right)\:=\mathrm{2}\:\Rightarrow \\ $$$${c}^{\mathrm{2}} \:+{c}^{\mathrm{2}} \:=\mathrm{2}\:\Rightarrow\:\mathrm{2}{c}^{\mathrm{2}} \:=\mathrm{2}\:\Rightarrow\:{c}\:=\overset{−} {+}\mathrm{1}\:\:{but}\:{f}\left(\mathrm{1}\right)={f}\left(\mathrm{3}\right)\:=\mathrm{1} \\ $$$$\Rightarrow\:{f}\left({x}\right)=\mathrm{1}\:\forall{x}\:\in{R}^{+} \\ $$

Commented by rahul 19 last updated on 22/Apr/18

thank u sir !

$${thank}\:{u}\:{sir}\:! \\ $$

Answered by MJS last updated on 21/Apr/18

x=1; y=1  f(1)f(1)+f(3)f(3)=2f(1)  f(1)^2 −2f(1)+1=0  (f(1)−1)^2 =0  f(1)=1    x=3; y=3  f(3)f(3)+f(1)f(1)=2f(9)  1+1=2f(9)  f(9)=1    so at least one solution is  f(x)=1    we could also start with  x=1; y=3  f(1)f(3)+f((3/1))f((3/3))=2f(1×3)  f(1)+f(1)=2 ⇒ f(1)=1

$${x}=\mathrm{1};\:{y}=\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right){f}\left(\mathrm{1}\right)+{f}\left(\mathrm{3}\right){f}\left(\mathrm{3}\right)=\mathrm{2}{f}\left(\mathrm{1}\right) \\ $$$${f}\left(\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{f}\left(\mathrm{1}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\left({f}\left(\mathrm{1}\right)−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$ \\ $$$${x}=\mathrm{3};\:{y}=\mathrm{3} \\ $$$${f}\left(\mathrm{3}\right){f}\left(\mathrm{3}\right)+{f}\left(\mathrm{1}\right){f}\left(\mathrm{1}\right)=\mathrm{2}{f}\left(\mathrm{9}\right) \\ $$$$\mathrm{1}+\mathrm{1}=\mathrm{2}{f}\left(\mathrm{9}\right) \\ $$$${f}\left(\mathrm{9}\right)=\mathrm{1} \\ $$$$ \\ $$$$\mathrm{so}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{is} \\ $$$${f}\left({x}\right)=\mathrm{1} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{could}\:\mathrm{also}\:\mathrm{start}\:\mathrm{with} \\ $$$${x}=\mathrm{1};\:{y}=\mathrm{3} \\ $$$${f}\left(\mathrm{1}\right){f}\left(\mathrm{3}\right)+{f}\left(\frac{\mathrm{3}}{\mathrm{1}}\right){f}\left(\frac{\mathrm{3}}{\mathrm{3}}\right)=\mathrm{2}{f}\left(\mathrm{1}×\mathrm{3}\right) \\ $$$${f}\left(\mathrm{1}\right)+{f}\left(\mathrm{1}\right)=\mathrm{2}\:\Rightarrow\:{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$

Commented by rahul 19 last updated on 21/Apr/18

sir , actually i also got one of the sol.  as f(x)=1.   But i am finding hard to prove that  for any value of x,y ∈ R^+ .  f(x)=1 only !   i mean only one solution.

$${sir}\:,\:{actually}\:{i}\:{also}\:{got}\:{one}\:{of}\:{the}\:{sol}. \\ $$$${as}\:{f}\left({x}\right)=\mathrm{1}.\: \\ $$$${But}\:{i}\:{am}\:{finding}\:{hard}\:{to}\:{prove}\:{that} \\ $$$${for}\:{any}\:{value}\:{of}\:{x},{y}\:\in\:\boldsymbol{{R}}^{+} . \\ $$$${f}\left({x}\right)=\mathrm{1}\:{only}\:!\: \\ $$$${i}\:{mean}\:{only}\:{one}\:{solution}. \\ $$$$ \\ $$

Commented by MJS last updated on 21/Apr/18

if the function is y=1 then the given equation  is true for all x∈R because  f(x)=f(y)=f((3/x))=f((3/y))=f(xy)=1 and  1×1+1×1=2×1    if x≠y was demanded we′d need a different  function, but I could not find one

$$\mathrm{if}\:\mathrm{the}\:\mathrm{function}\:\mathrm{is}\:{y}=\mathrm{1}\:\mathrm{then}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation} \\ $$$$\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{all}\:{x}\in\mathbb{R}\:\mathrm{because} \\ $$$${f}\left({x}\right)={f}\left({y}\right)={f}\left(\frac{\mathrm{3}}{{x}}\right)={f}\left(\frac{\mathrm{3}}{{y}}\right)={f}\left({xy}\right)=\mathrm{1}\:\mathrm{and} \\ $$$$\mathrm{1}×\mathrm{1}+\mathrm{1}×\mathrm{1}=\mathrm{2}×\mathrm{1} \\ $$$$ \\ $$$$\mathrm{if}\:{x}\neq{y}\:\mathrm{was}\:\mathrm{demanded}\:\mathrm{we}'\mathrm{d}\:\mathrm{need}\:\mathrm{a}\:\mathrm{different} \\ $$$$\mathrm{function},\:\mathrm{but}\:\mathrm{I}\:\mathrm{could}\:\mathrm{not}\:\mathrm{find}\:\mathrm{one} \\ $$

Commented by rahul 19 last updated on 22/Apr/18

thank u sir.

$${thank}\:{u}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com