All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 33651 by rahul 19 last updated on 21/Apr/18
Letfunctionf(x)bedefinedasf(x)=x2+bx+c,whereb,c∈R.Andf(1)−2f(5)+f(9)=32.Findno.oforderedpairs(b,c)suchthat∣f(x)∣⩽8∀x∈[1,9]?
Answered by MJS last updated on 21/Apr/18
somethingaboutpolynomialfunctionsof2nddegreethereare2differentpointsofviewusuallywearefocusedonzerosx2+px+q=0⇔⇔(x−x1)(x−x2)⇔⇔p=−(x1+x2)∧q=x1x2butweshouldthinkaboutsteepness,orientationandshiftsinbothx−andy−directionsy=ax2+bx+ca>0⇔‘‘hanging″parabolaa<0⇔‘‘standingparabola″∣a∣determinessteepnessy′=2ax+b∣2a∣<1⇔‘‘flat″or‘‘wide″parabola∣2a∣>1⇔‘‘steep″or‘‘narrow″parabolabandchavegotsomethingtodowiththex−andy−shiftslet′slookatthebasicfunctiony=x2shiftup/downy−v=x2⇔y=x2+vshiftleft/righty=(x+u)2+v⇔y=x2+2ux+u2+vb=2u∧c=u2+v⇔u=b2∧v=c−b24soy=x2+bx+cisashiftedbasicparabola.wearelookingforapartofthisfunctionwhichfitsintoawindowofwidth8andheight16(becausethewidthofthegiveninterval[1;9]is8andabs(f(x))⩽8⇔⇔−8⩽f(x)⩽8⇔0⩽f(x)+8⩽16wecanlookaty=x2andafterwardsdotheshifting1.tryonleftarm(symm.torightarm)f(x):y=x2x⩽0f(x)±16=f(x−8)x2±16=x2−16x+6416x=64±16[x=3∨x=5⇒nosolutiononleftarmf(±3)=9;f(±5)=25butf(0)=0⇒ourwindowwouldbe8×25insteadof8×16]2.trycenterf(−4)=16f(0)=0f(4)=16istheonlysolutionbutweneedx∈[1;9]insteadofx∈[−4;4]⇒⇒shift5totherighty=(x−5)2andweneedy∈[−8;8]insteadofy∈[0;16]⇒⇒shift8downy=(x−5)2−8y=x2−10x+17there′sonlyonepair(b;c)=(−10;17)[f(1)−2f(5)+f(9)=32istrueforanypair(b;c),sowedidn′tneedit:f(1)=1+b+cf(5)=25+5b+cf(9)=81+9b+c(1+b+c)−2(25+5b+c)+(81+9b+c)=32]
Commented by rahul 19 last updated on 22/Apr/18
thankusomuchsir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com