Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33658 by rahul 19 last updated on 21/Apr/18

If f(x)= x^3 −3x+1  then find number of different   real  solutions of f(f(x))=0 ?

$$\boldsymbol{{I}}{f}\:{f}\left({x}\right)=\:{x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{1} \\ $$$${then}\:{find}\:{number}\:{of}\:{different}\:\:\:{real} \\ $$$${solutions}\:{of}\:{f}\left({f}\left({x}\right)\right)=\mathrm{0}\:? \\ $$

Commented by rahul 19 last updated on 21/Apr/18

pls help.

$${pls}\:{help}. \\ $$

Answered by MJS last updated on 21/Apr/18

f(x)=0  x_1 =−2cos (π/9)≈−1.879  x_2 =2sin (π/(18))≈0.347  x_3 =2cos ((2π)/9)≈1.532            [I can show the way to the exact solution             but you can also solve by try & error]    the range of f(x)=]−∞;∞[ but the function  reaches some values 2 or 3 times. so we need  the local minimum and maximum, at f′(x)=0  min(f(x))∈[x_2 ; x_3 ]  max(f(x))∈[x_1 ; x_2 ]  f′(x)=3x^2 −3=0 ⇒ Min= ((1),((−1)) ); Max= (((−1)),(3) )    so y=f(x) reaches y∈ ]−∞;−1[ ∩ ]3;∞[ once,  y=−1∧y=3 twice and y∈ ]−1;3[ three times    ⇒ f(x) reaches y=x_1  once, y=x_2  three times  and y=x_3  three times ⇒ f(f(x)) has 7 real zeros

$${f}\left({x}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =−\mathrm{2cos}\:\frac{\pi}{\mathrm{9}}\approx−\mathrm{1}.\mathrm{879} \\ $$$${x}_{\mathrm{2}} =\mathrm{2sin}\:\frac{\pi}{\mathrm{18}}\approx\mathrm{0}.\mathrm{347} \\ $$$${x}_{\mathrm{3}} =\mathrm{2cos}\:\frac{\mathrm{2}\pi}{\mathrm{9}}\approx\mathrm{1}.\mathrm{532} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{I}\:\mathrm{can}\:\mathrm{show}\:\mathrm{the}\:\mathrm{way}\:\mathrm{to}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{solution}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\mathrm{but}\:\mathrm{you}\:\mathrm{can}\:\mathrm{also}\:\mathrm{solve}\:\mathrm{by}\:\mathrm{try}\:\&\:\mathrm{error}\right] \\ $$$$ \\ $$$$\left.\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{f}\left({x}\right)=\right]−\infty;\infty\left[\:\mathrm{but}\:\mathrm{the}\:\mathrm{function}\right. \\ $$$$\mathrm{reaches}\:\mathrm{some}\:\mathrm{values}\:\mathrm{2}\:\mathrm{or}\:\mathrm{3}\:\mathrm{times}.\:\mathrm{so}\:\mathrm{we}\:\mathrm{need} \\ $$$$\mathrm{the}\:\mathrm{local}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum},\:\mathrm{at}\:{f}'\left({x}\right)=\mathrm{0} \\ $$$$\mathrm{min}\left({f}\left({x}\right)\right)\in\left[{x}_{\mathrm{2}} ;\:{x}_{\mathrm{3}} \right] \\ $$$$\mathrm{max}\left({f}\left({x}\right)\right)\in\left[{x}_{\mathrm{1}} ;\:{x}_{\mathrm{2}} \right] \\ $$$${f}'\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}=\mathrm{0}\:\Rightarrow\:\mathrm{Min}=\begin{pmatrix}{\mathrm{1}}\\{−\mathrm{1}}\end{pmatrix};\:\mathrm{Max}=\begin{pmatrix}{−\mathrm{1}}\\{\mathrm{3}}\end{pmatrix} \\ $$$$ \\ $$$$\left.\mathrm{so}\:{y}={f}\left({x}\right)\:\mathrm{reaches}\:{y}\in\:\right]−\infty;−\mathrm{1}\left[\:\cap\:\right]\mathrm{3};\infty\left[\:\mathrm{once},\right. \\ $$$$\left.{y}=−\mathrm{1}\wedge{y}=\mathrm{3}\:\mathrm{twice}\:\mathrm{and}\:{y}\in\:\right]−\mathrm{1};\mathrm{3}\left[\:\mathrm{three}\:\mathrm{times}\right. \\ $$$$ \\ $$$$\Rightarrow\:{f}\left({x}\right)\:\mathrm{reaches}\:{y}={x}_{\mathrm{1}} \:\mathrm{once},\:{y}={x}_{\mathrm{2}} \:\mathrm{three}\:\mathrm{times} \\ $$$$\mathrm{and}\:{y}={x}_{\mathrm{3}} \:\mathrm{three}\:\mathrm{times}\:\Rightarrow\:{f}\left({f}\left({x}\right)\right)\:\mathrm{has}\:\mathrm{7}\:\mathrm{real}\:\mathrm{zeros} \\ $$

Commented by rahul 19 last updated on 22/Apr/18

thank u so much sir!

$${thank}\:{u}\:{so}\:{much}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com