Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33704 by math khazana by abdo last updated on 22/Apr/18

let f(t) = (1/(a^2  +t^2 ))  witha>0 give the fourier  transformfor f .

$${let}\:{f}\left({t}\right)\:=\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }\:\:{witha}>\mathrm{0}\:{give}\:{the}\:{fourier} \\ $$ $${transformfor}\:{f}\:. \\ $$ $$ \\ $$

Commented byprof Abdo imad last updated on 27/Apr/18

we know that F(f(x)) =(1/(√(2π))) ∫_(−∞) ^(+∞) f(t) e^(−ixt) dt so  for f(x)= (1/(a^2  +x^2 )) we get  F(f(x))= (1/(√(2π))) ∫_(−∞) ^(+∞)    (e^(−ixt) /(a^2  +t^2 )) dt  let consider the  complex function ϕ(z) =  (e^(−ixz) /(z^2  +a^2 )) the poles of  ϕ are ia and −ia (simples) so  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,ia)  ϕ(z)=  (e^(−ixz) /((z−ia)(z+ia))) ⇒Res(ϕ,ia)= (e^(−ix(ia)) /(2ia))  =  (e^(ax) /(2ia)) ⇒ ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ (e^(ax) /(2ia)) = (π/a) e^(ax)  ⇒  F(f(x))= (1/(√(2π))) (π/a) e^(ax)  =(√(π^2 /(2π)))  (e^(ax) /a)  ★F(f(x)(t)= (√(π/2))  (e^(ax) /a) ★

$${we}\:{know}\:{that}\:{F}\left({f}\left({x}\right)\right)\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}}\:\int_{−\infty} ^{+\infty} {f}\left({t}\right)\:{e}^{−{ixt}} {dt}\:{so} \\ $$ $${for}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:{we}\:{get} \\ $$ $${F}\left({f}\left({x}\right)\right)=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{−{ixt}} }{{a}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }\:{dt}\:\:{let}\:{consider}\:{the} \\ $$ $${complex}\:{function}\:\varphi\left({z}\right)\:=\:\:\frac{{e}^{−{ixz}} }{{z}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }\:{the}\:{poles}\:{of} \\ $$ $$\varphi\:{are}\:{ia}\:{and}\:−{ia}\:\left({simples}\right)\:{so} \\ $$ $$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{ia}\right) \\ $$ $$\varphi\left({z}\right)=\:\:\frac{{e}^{−{ixz}} }{\left({z}−{ia}\right)\left({z}+{ia}\right)}\:\Rightarrow{Res}\left(\varphi,{ia}\right)=\:\frac{{e}^{−{ix}\left({ia}\right)} }{\mathrm{2}{ia}} \\ $$ $$=\:\:\frac{{e}^{{ax}} }{\mathrm{2}{ia}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{{ax}} }{\mathrm{2}{ia}}\:=\:\frac{\pi}{{a}}\:{e}^{{ax}} \:\Rightarrow \\ $$ $${F}\left({f}\left({x}\right)\right)=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}}\:\frac{\pi}{{a}}\:{e}^{{ax}} \:=\sqrt{\frac{\pi^{\mathrm{2}} }{\mathrm{2}\pi}}\:\:\frac{{e}^{{ax}} }{{a}} \\ $$ $$\bigstar{F}\left({f}\left({x}\right)\left({t}\right)=\:\sqrt{\frac{\pi}{\mathrm{2}}}\:\:\frac{{e}^{{ax}} }{{a}}\:\bigstar\right. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com