Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33705 by math khazana by abdo last updated on 22/Apr/18

let  α>0  find the fourier transform of  f(t) = e^(−a^2 t^2 )

letα>0findthefouriertransformof f(t)=ea2t2

Commented bymath khazana by abdo last updated on 22/Apr/18

F(f(x))= (1/(√(2π))) ∫_(−∞) ^(+∞)   f(t) e^(−ixt) dt  .

F(f(x))=12π+f(t)eixtdt.

Answered by sma3l2996 last updated on 22/Apr/18

F(f(t))(x)=(1/(√(2π)))∫_(−∞) ^∞ e^(−a^2 t^2 −ixt) dt=(1/(√(2π)))∫_(−∞) ^(+∞) e^(−(a^2 t^2 +ixt)) dx  a^2 t^2 +ixt=a^2 t^2 +2×at×((ix)/(2a))+(((ix)/(2a)))^2 −(((ix)/(2a)))^2 =(at+((ix)/(2a)))^2 +(x^2 /(4a^2 ))  let  u=at+((ix)/(2a))⇒dt=(du/a)  F(f(t))(x)=(1/(a(√(2π))))∫_(−∞) ^∞ e^(−u^2 −(x^2 /(4a^2 ))) du=(e^(−(x^2 /(4a^2 ))) /(a(√(2π))))∫_(−∞) ^(+∞) e^(−u^2 ) du  we know that  ∫_(−∞) ^(+∞) e^(−x^2 ) dx=(√π)  so  F(f(t))(x)=((√2)/(2a))e^(−(x^2 /(4a^2 )))

F(f(t))(x)=12πea2t2ixtdt=12π+e(a2t2+ixt)dx a2t2+ixt=a2t2+2×at×ix2a+(ix2a)2(ix2a)2=(at+ix2a)2+x24a2 letu=at+ix2adt=dua F(f(t))(x)=1a2πeu2x24a2du=ex24a2a2π+eu2du weknowthat+ex2dx=π so F(f(t))(x)=22aex24a2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com