Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33709 by math khazana by abdo last updated on 22/Apr/18

find  Σ_(n=0) ^∞  (n+1)x^(3n)   2) calculate  Σ_(n=0) ^∞    ((n+1)/8^n ) .

$${find}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({n}+\mathrm{1}\right){x}^{\mathrm{3}{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{n}+\mathrm{1}}{\mathrm{8}^{{n}} }\:. \\ $$

Commented by prof Abdo imad last updated on 27/Apr/18

let put for ∣x∣<1 w(x)= Σ_(n=0) ^∞  (n+1)x^(3n)   we have  x^3 w(x)=Σ_(n=0) ^∞ (n+1)(x^3 )^(n+1) =ϕ(x^3 ) with  ϕ(t)=Σ_(n=0) ^∞  (n+1)t^(n+1)   but we have  Σ_(n=0) ^∞  t^n  = (1/(1−t)) ⇒Σ_(n=1) ^∞ n t^(n−1)  = (1/((1−t)^2 )) ⇒  Σ_(n=1) ^∞  n t^n    =  (t/((1−t)^2 )) but ϕ(t)=Σ_(n=1) ^∞ n t^n ⇒  ϕ(t) = (t/((1−t)^2 ))  with ∣t∣<1  ⇒x^3 w(x)= (x^3 /((1−x^3 )^2 ))  ⇒ w(x)= (1/((1−x^3 )^2 ))  2)we have Σ_(n=0) ^∞   ((n+1)/8^n ) = Σ_(n=0) ^∞ (n+1)((1/2))^(3n)   =w((1/2)) =  (1/((1−(1/8))^2 )) = (1/(((7/8))^2 )) = ((64)/(49))  .

$${let}\:{put}\:{for}\:\mid{x}\mid<\mathrm{1}\:{w}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({n}+\mathrm{1}\right){x}^{\mathrm{3}{n}} \:\:{we}\:{have} \\ $$$${x}^{\mathrm{3}} {w}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \left({n}+\mathrm{1}\right)\left({x}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} =\varphi\left({x}^{\mathrm{3}} \right)\:{with} \\ $$$$\varphi\left({t}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({n}+\mathrm{1}\right){t}^{{n}+\mathrm{1}} \:\:{but}\:{we}\:{have} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:{t}^{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{1}−{t}}\:\Rightarrow\sum_{{n}=\mathrm{1}} ^{\infty} {n}\:{t}^{{n}−\mathrm{1}} \:=\:\frac{\mathrm{1}}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:{n}\:{t}^{{n}} \:\:\:=\:\:\frac{{t}}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }\:{but}\:\varphi\left({t}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} {n}\:{t}^{{n}} \Rightarrow \\ $$$$\varphi\left({t}\right)\:=\:\frac{{t}}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }\:\:{with}\:\mid{t}\mid<\mathrm{1}\:\:\Rightarrow{x}^{\mathrm{3}} {w}\left({x}\right)=\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}−{x}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:{w}\left({x}\right)=\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{n}+\mathrm{1}}{\mathrm{8}^{{n}} }\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \left({n}+\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}{n}} \\ $$$$={w}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{8}}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\left(\frac{\mathrm{7}}{\mathrm{8}}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{64}}{\mathrm{49}}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com