Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33716 by prof Abdo imad last updated on 22/Apr/18

calculate  Σ_(n=0) ^∞    arctan( ((e^(n+1)   −e^n )/(1+e^(2n+1) ))) .

$${calculate}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:{arctan}\left(\:\frac{{e}^{{n}+\mathrm{1}} \:\:−{e}^{{n}} }{\mathrm{1}+{e}^{\mathrm{2}{n}+\mathrm{1}} }\right)\:. \\ $$

Commented by prof Abdo imad last updated on 31/May/18

let put S_n  = Σ_(k=0) ^n  arctan( ((e^(n+1)  −e^n )/(1+e^(2n+1) ))) let use  the changement e^n  =tan(u_n ) ⇒ u_n =arctan(e^n )  ((e^(n+1)  −e^n )/(1+e^(2n+1) )) = ((tan(u_(n+1) ) −tan(u_n ))/(1+tan(u_(n+1) )tan(u_n )))  =tan(u_(n+1)  −u_n ) ⇒ S_n =Σ_(k=0) ^n  (u_(n+1)  −u_n )  = u_(n+1)  −u_0     = arctan(e^(n+1) ) −(π/4)  ⇒lim_(n→+∞)  S_n  =(π/2) −(π/4) =(π/4)  ★lim_(n→+∞)  S_n  = (π/4) ★

$${let}\:{put}\:{S}_{{n}} \:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{arctan}\left(\:\frac{{e}^{{n}+\mathrm{1}} \:−{e}^{{n}} }{\mathrm{1}+{e}^{\mathrm{2}{n}+\mathrm{1}} }\right)\:{let}\:{use} \\ $$$${the}\:{changement}\:{e}^{{n}} \:={tan}\left({u}_{{n}} \right)\:\Rightarrow\:{u}_{{n}} ={arctan}\left({e}^{{n}} \right) \\ $$$$\frac{{e}^{{n}+\mathrm{1}} \:−{e}^{{n}} }{\mathrm{1}+{e}^{\mathrm{2}{n}+\mathrm{1}} }\:=\:\frac{{tan}\left({u}_{{n}+\mathrm{1}} \right)\:−{tan}\left({u}_{{n}} \right)}{\mathrm{1}+{tan}\left({u}_{{n}+\mathrm{1}} \right){tan}\left({u}_{{n}} \right)} \\ $$$$={tan}\left({u}_{{n}+\mathrm{1}} \:−{u}_{{n}} \right)\:\Rightarrow\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\left({u}_{{n}+\mathrm{1}} \:−{u}_{{n}} \right) \\ $$$$=\:{u}_{{n}+\mathrm{1}} \:−{u}_{\mathrm{0}} \:\:\:\:=\:{arctan}\left({e}^{{n}+\mathrm{1}} \right)\:−\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \:=\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{4}}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\bigstar{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \:=\:\frac{\pi}{\mathrm{4}}\:\bigstar \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Apr/18

=Σ_(n=0) ^∞ {tan^(−1) (e^(n+1) )−tan^(−1) (e^n )}  T_n =tan^(−1) (e^(n+1) )−tan^(−1) (e^n )  T_o =tan^(−1) (e^1 )−tan^(−1) (e^0 )    T_1 =tan^(−1) (e^2 )−tan^(−1) (e^1 )  T_2 =tan^(−1) (e^3 )−tan^(−1) (e^2 )  so adding upto n terms   S_n =tan^(−1) (e^(n+1) )−tan^(−1) (e^o )    when n tends to infinity  =tan^(−1) (∞)−tan^(−1) (1)  =Π/2−Π/4  =Π/4

$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\mathrm{tan}^{−\mathrm{1}} \left({e}^{{n}+\mathrm{1}} \right)−\mathrm{tan}^{−\mathrm{1}} \left({e}^{{n}} \right)\right\} \\ $$$${T}_{{n}} =\mathrm{tan}^{−\mathrm{1}} \left({e}^{{n}+\mathrm{1}} \right)−\mathrm{tan}^{−\mathrm{1}} \left({e}^{{n}} \right) \\ $$$${T}_{{o}} =\mathrm{tan}^{−\mathrm{1}} \left({e}^{\mathrm{1}} \right)−\mathrm{tan}^{−\mathrm{1}} \left({e}^{\mathrm{0}} \right) \\ $$$$\:\:{T}_{\mathrm{1}} =\mathrm{tan}^{−\mathrm{1}} \left({e}^{\mathrm{2}} \right)−\mathrm{tan}^{−\mathrm{1}} \left({e}^{\mathrm{1}} \right) \\ $$$${T}_{\mathrm{2}} =\mathrm{tan}^{−\mathrm{1}} \left({e}^{\mathrm{3}} \right)−\mathrm{tan}^{−\mathrm{1}} \left({e}^{\mathrm{2}} \right) \\ $$$${so}\:{adding}\:{upto}\:{n}\:{terms}\: \\ $$$${S}_{{n}} =\mathrm{tan}^{−\mathrm{1}} \left({e}^{{n}+\mathrm{1}} \right)−\mathrm{tan}^{−\mathrm{1}} \left({e}^{{o}} \right) \\ $$$$\:\:{when}\:{n}\:{tends}\:{to}\:{infinity} \\ $$$$=\mathrm{tan}^{−\mathrm{1}} \left(\infty\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}\right) \\ $$$$=\Pi/\mathrm{2}−\Pi/\mathrm{4} \\ $$$$=\Pi/\mathrm{4} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com