Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33717 by prof Abdo imad last updated on 22/Apr/18

find the value of  Σ_(n=0) ^∞  artan( (((√(n+1)) −(√n))/(1+(√(n^2 +n)))) )

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{artan}\left(\:\frac{\sqrt{{n}+\mathrm{1}}\:−\sqrt{{n}}}{\mathrm{1}+\sqrt{{n}^{\mathrm{2}} +{n}}}\:\right) \\ $$

Commented by prof Abdo imad last updated on 24/Apr/18

let put S_n = Σ_(k=0) ^n  arctan((((√(k+1)) −(√k))/(1+(√(k^2 +k))))) let put  (√k)=tan(u_k ) ⇔u_k =arctan((√k)) ⇒  S_n = Σ_(k=0) ^n  arctan( ((tan(u_(k+1) ) −tan(u_k ))/(1+tan(u_k )tan(u_(k+1) ))))  =Σ_(k=0) ^n  arctan(tan(u_(k+1) −u_k ))  =Σ_(k=0) ^n (u_(k+1)  −u_k ) =u_(n+1)  −u_0 = arctan((√n)) ⇒  lim_(n→+∞)  S_n = (π/2) .

$${let}\:{put}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{arctan}\left(\frac{\sqrt{{k}+\mathrm{1}}\:−\sqrt{{k}}}{\mathrm{1}+\sqrt{{k}^{\mathrm{2}} +{k}}}\right)\:{let}\:{put} \\ $$$$\sqrt{{k}}={tan}\left({u}_{{k}} \right)\:\Leftrightarrow{u}_{{k}} ={arctan}\left(\sqrt{{k}}\right)\:\Rightarrow \\ $$$${S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{arctan}\left(\:\frac{{tan}\left({u}_{{k}+\mathrm{1}} \right)\:−{tan}\left({u}_{{k}} \right)}{\mathrm{1}+{tan}\left({u}_{{k}} \right){tan}\left({u}_{{k}+\mathrm{1}} \right)}\right) \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \:{arctan}\left({tan}\left({u}_{{k}+\mathrm{1}} −{u}_{{k}} \right)\right) \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \left({u}_{{k}+\mathrm{1}} \:−{u}_{{k}} \right)\:={u}_{{n}+\mathrm{1}} \:−{u}_{\mathrm{0}} =\:{arctan}\left(\sqrt{{n}}\right)\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\:\frac{\pi}{\mathrm{2}}\:. \\ $$

Commented by prof Abdo imad last updated on 24/Apr/18

S_n =arctan((√(n+1)))

$${S}_{{n}} ={arctan}\left(\sqrt{{n}+\mathrm{1}}\right) \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Apr/18

Σ_0 ^∞ tan^(−1) ((√(n+1))) −tan^(−1) ((√(n)))  T_(n ) =tan^(−1) ((√(n+1 )))  −tan^(−1) ((√(n)))  T_0 =tan^(−1) ((√(1))) −tan^(−1) (0)  T_1 =tan^(−1) ((√(2))) −tan^(−1) (1)  so S_n =T_0  +T_1 +.....+T_n             =tan^(−1) ((√(n+1)) )−tan^(−1) (0)  when n tends to infinity the sum is  tan^(−1) (∞) −tan^(−1) (0)  =∐/2 −0  =∐/2  ∐ this sign used as pie

$$\underset{\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\left.{n}+\mathrm{1}\right)}\:−\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\left.{n}\right)}\right.\right. \\ $$$${T}_{{n}\:} =\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\left.{n}+\mathrm{1}\:\right)}\:\:−\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\left.{n}\right)}\right.\right. \\ $$$${T}_{\mathrm{0}} =\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\left.\mathrm{1}\right)}\:−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{0}\right)\right. \\ $$$${T}_{\mathrm{1}} =\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\left.\mathrm{2}\right)}\:−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}\right)\right. \\ $$$${so}\:{S}_{{n}} ={T}_{\mathrm{0}} \:+{T}_{\mathrm{1}} +.....+{T}_{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{{n}+\mathrm{1}}\:\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{0}\right) \\ $$$${when}\:{n}\:{tends}\:{to}\:{infinity}\:{the}\:{sum}\:{is} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\infty\right)\:−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{0}\right) \\ $$$$=\coprod/\mathrm{2}\:−\mathrm{0} \\ $$$$=\coprod/\mathrm{2} \\ $$$$\coprod\:{this}\:{sign}\:{used}\:{as}\:{pie}\: \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com