Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33719 by prof Abdo imad last updated on 22/Apr/18

simplify S_n (x) =(1+x^2 )(1+x^4 )....(1+x^2^n  )  2) find lim_(n→+∞)  S_n (x) if ∣x∣<1 .

$${simplify}\:{S}_{{n}} \left({x}\right)\:=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)....\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$ $$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \left({x}\right)\:{if}\:\mid{x}\mid<\mathrm{1}\:. \\ $$

Commented byprof Abdo imad last updated on 23/Apr/18

we have (1+x^2 )(1+x^4 ) =1+x^4  +x^2  +x^6   =1+x^2  +x^4  +x^6  =((1−x^8 )/(1−x^2 ))  if x^2 ≠1  let suppose that S_n (x) =((1−x^2^(n+1)  )/(1−x^2 ))  S_(n+1) (x)=(1+x^2 )(1+x^4 ).....(1+x^2^(n+1)  )  = (1+x^2^(n+1)  ) S_n (x)=(((1+x^2^(n+1)  )(1−x^2^(n+1)  ))/(1−x^2 ))  =((1−(x^2^(n+1)  )^2 )/(1−x^2 ))  = ((1−x^2^(n+2)  )/(1−x^2 )) the result is true at term  n+1  and we must study tbe case x=+^− 1  2) we have proved that   S_n (x) =((1 −x^2^(n+1)  )/(1−x^2 ))  so for ∣x∣<1 lim_(n→+∞) S_n (x)=(1/(1−x^2 ))

$${we}\:{have}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)\:=\mathrm{1}+{x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+{x}^{\mathrm{6}} \\ $$ $$=\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \:+{x}^{\mathrm{6}} \:=\frac{\mathrm{1}−{x}^{\mathrm{8}} }{\mathrm{1}−{x}^{\mathrm{2}} }\:\:{if}\:{x}^{\mathrm{2}} \neq\mathrm{1} \\ $$ $${let}\:{suppose}\:{that}\:{S}_{{n}} \left({x}\right)\:=\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$ $${S}_{{n}+\mathrm{1}} \left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right).....\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}+\mathrm{1}} } \right) \\ $$ $$=\:\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}+\mathrm{1}} } \right)\:{S}_{{n}} \left({x}\right)=\frac{\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}+\mathrm{1}} } \right)\left(\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } \right)}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$ $$=\frac{\mathrm{1}−\left({x}^{\mathrm{2}^{{n}+\mathrm{1}} } \right)^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{2}} }\:\:=\:\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{2}} } }{\mathrm{1}−{x}^{\mathrm{2}} }\:{the}\:{result}\:{is}\:{true}\:{at}\:{term} \\ $$ $${n}+\mathrm{1}\:\:{and}\:{we}\:{must}\:{study}\:{tbe}\:{case}\:{x}=\overset{−} {+}\mathrm{1} \\ $$ $$\left.\mathrm{2}\right)\:{we}\:{have}\:{proved}\:{that}\: \\ $$ $${S}_{{n}} \left({x}\right)\:=\frac{\mathrm{1}\:−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}^{\mathrm{2}} }\:\:{so}\:{for}\:\mid{x}\mid<\mathrm{1}\:{lim}_{{n}\rightarrow+\infty} {S}_{{n}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Apr/18

(1+x^2 )(1+x^4 )=1+x^2 +x^4 +x^6   (1+x^2 )(1+x^4 )(1+x^8 )=(1+x^2 +x^4 +x^6 )(1+x^8 )  =1+x^2 +x^4 +x^6 +x^8 +x^(10) +x^(12) +x^(14)     S_n (x)=(1−x^(2n) )/(1−x^2 )  so the value of S_n (x) is 1/(1−x^2 ) when limit n  tends to infinity          i_(x→0)

$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)=\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{6}} \\ $$ $$\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)\left(\mathrm{1}+{x}^{\mathrm{8}} \right)=\left(\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{6}} \right)\left(\mathrm{1}+{x}^{\mathrm{8}} \right) \\ $$ $$=\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{6}} +{x}^{\mathrm{8}} +{x}^{\mathrm{10}} +{x}^{\mathrm{12}} +{x}^{\mathrm{14}} \\ $$ $$ \\ $$ $${S}_{{n}} \left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{2}{n}} \right)/\left(\mathrm{1}−{x}^{\mathrm{2}} \right) \\ $$ $${so}\:{the}\:{value}\:{of}\:{S}_{{n}} \left({x}\right)\:{is}\:\mathrm{1}/\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\:{when}\:{limit}\:{n} \\ $$ $${tends}\:{to}\:{infinity} \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{i}} \\ $$

Commented byprof Abdo imad last updated on 22/Apr/18

its not correct because ((1−x^(2n) )/(1−x^2 ))  =((1−(x^2 )^n )/(1−x^2 )) =(((1−x^2 )(1+x^2  +x^4  +...+x^(2n−2) ))/(1−x^2 ))  =1+x^2  +x^4  +...+x^(2n−2)   ≠ S_n

$${its}\:{not}\:{correct}\:{because}\:\frac{\mathrm{1}−{x}^{\mathrm{2}{n}} }{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$ $$=\frac{\mathrm{1}−\left({x}^{\mathrm{2}} \right)^{{n}} }{\mathrm{1}−{x}^{\mathrm{2}} }\:=\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \:+...+{x}^{\mathrm{2}{n}−\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$ $$=\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \:+...+{x}^{\mathrm{2}{n}−\mathrm{2}} \:\:\neq\:{S}_{{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com