Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33735 by prof Abdo imad last updated on 22/Apr/18

calculate  ∫_0 ^∞       ((cos(2x)dx)/((x^2 +1)( 2x^2  +3))) .

calculate0cos(2x)dx(x2+1)(2x2+3).

Commented by prof Abdo imad last updated on 25/Apr/18

let put I = ∫_0 ^∞     ((cos(2x))/((x^2 +1)(2x^2 +3)))dx  2I = ∫_(−∞) ^(+∞)    ((cos(2x))/((x^2 +1)(2x^2 +3)))dx  =Re( ∫_(−∞) ^(+∞)   (e^(i2x) /((x^2 +1)(2x^2 +3)))dx) let consider the  complex function ϕ(z)= (e^(i2z) /((z^2 +1)(2z^2 +3)))  ϕ(z) = (e^(i2z) /(2(z^2 +1)(z^2 +(3/2)))) =  (e^(i2z) /(2(z−i)(z+i)(z−i(√((3/2))(z +i((√3)/2))))))  so the poles of ϕ are i,−i,i(√(3/2)) ,−i(√(3/2))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (Res(ϕ,i) +Res(ϕ,i(√(3/2)) ))  Res(ϕ,i) =   (e^(−2) /(2(2i)(−1+(3/2)))) = (e^(−2) /(4i.(1/2))) = (e^(−2) /(2i))  Res(ϕ,i(√(3/2))) =  (e^(−2(√(3/2))) /(2(−(3/2)+1)(2i(√(3/2)))))  =    (e^(−(√6)) /(−2i((√3)/(√2)))) =−(e^(−(√6)) /(i(√6))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ(  (e^(−2) /(2i)) −(e^(−(√6)) /(i(√6))))  = π e^(−2)  −((2π)/(√6)) e^(−(√6))      ⇒    I = (π/2) e^(−2)   −(π/(√6)) e^(−(√6))  .

letputI=0cos(2x)(x2+1)(2x2+3)dx2I=+cos(2x)(x2+1)(2x2+3)dx=Re(+ei2x(x2+1)(2x2+3)dx)letconsiderthecomplexfunctionφ(z)=ei2z(z2+1)(2z2+3)φ(z)=ei2z2(z2+1)(z2+32)=ei2z2(zi)(z+i)(zi32)(z+i32)sothepolesofφarei,i,i32,i32+φ(z)dz=2iπ(Res(φ,i)+Res(φ,i32))Res(φ,i)=e22(2i)(1+32)=e24i.12=e22iRes(φ,i32)=e2322(32+1)(2i32)=e62i32=e6i6+φ(z)dz=2iπ(e22ie6i6)=πe22π6e6I=π2e2π6e6.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com