All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33735 by prof Abdo imad last updated on 22/Apr/18
calculate∫0∞cos(2x)dx(x2+1)(2x2+3).
Commented by prof Abdo imad last updated on 25/Apr/18
letputI=∫0∞cos(2x)(x2+1)(2x2+3)dx2I=∫−∞+∞cos(2x)(x2+1)(2x2+3)dx=Re(∫−∞+∞ei2x(x2+1)(2x2+3)dx)letconsiderthecomplexfunctionφ(z)=ei2z(z2+1)(2z2+3)φ(z)=ei2z2(z2+1)(z2+32)=ei2z2(z−i)(z+i)(z−i32)(z+i32)sothepolesofφarei,−i,i32,−i32∫−∞+∞φ(z)dz=2iπ(Res(φ,i)+Res(φ,i32))Res(φ,i)=e−22(2i)(−1+32)=e−24i.12=e−22iRes(φ,i32)=e−2322(−32+1)(2i32)=e−6−2i32=−e−6i6⇒∫−∞+∞φ(z)dz=2iπ(e−22i−e−6i6)=πe−2−2π6e−6⇒I=π2e−2−π6e−6.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com