Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33736 by prof Abdo imad last updated on 23/Apr/18

find the value of  ∫_(−∞) ^(+∞)      (x^2 /((1+x +x^2 )^2 ))dx

findthevalueof+x2(1+x+x2)2dx

Commented by prof Abdo imad last updated on 23/Apr/18

let  use residus theorem we have  I = ∫_(−∞) ^(+∞)     (x^2 /(( (x+(1/2))^2  +(3/4))^2 ))  ch. x +(1/2) =((√3)/2) t  give   I = ∫_(−∞) ^(+∞)      ((((((√3)t)/2) −(1/2))^2 )/(((3/4)t^2  +(3/4))^2 )) ((√3)/2)dt  =((16)/9) .((√3)/2)  ∫_(−∞) ^(+∞)         ((3t^2  −2(√3) t +1)/(4( t^2  +1)^2 ))dt  = ((2(√3))/9) ∫_(−∞) ^(+∞)    ((3t^2  −2(√3) t +1)/((t^2  +1)^2 )) dt  .let consider  the complex function ϕ(z) = ((3z^2  −2(√3) z+1)/((z^2  +1)^2 ))  the poles of ϕ are i and−i (doubles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2i π Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)    (1/((2−1)!))((z−i)^2 ϕ(z))^′   =lim_(z→i) (  ((3z^2  −2(√3) z +1)/((z+i)^2 )))^′   =lim_(z→i)   (((6z−2(√3))(z+i)^2  −2(z+i)(3z^2  −2(√3)z +1))/((z+i)^4 ))  =lim_(z→i)  (((6z −2(√3))(z+i) −2(3z^2  −2(√3) z +1))/((z+i)^3 ))  = (((6i −2(√3))(2i) −2( 3i^2  −2(√3) i +1))/((2i)^3 ))  =((−12 −4(√3) i +6  4(√3)i −2)/(−8i)) = ((−8)/(−8i)) = (1/i)  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ((1/i))=2π ⇒  I= ((2(√3))/9) .(2π) =((4π(√3))/9)  ★ I =((4π(√3))/9) ★

letuseresidustheoremwehaveI=+x2((x+12)2+34)2ch.x+12=32tgiveI=+(3t212)2(34t2+34)232dt=169.32+3t223t+14(t2+1)2dt=239+3t223t+1(t2+1)2dt.letconsiderthecomplexfunctionφ(z)=3z223z+1(z2+1)2thepolesofφareiandi(doubles)+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!((zi)2φ(z))=limzi(3z223z+1(z+i)2)=limzi(6z23)(z+i)22(z+i)(3z223z+1)(z+i)4=limzi(6z23)(z+i)2(3z223z+1)(z+i)3=(6i23)(2i)2(3i223i+1)(2i)3=1243i+643i28i=88i=1i+φ(z)dz=2iπ(1i)=2πI=239.(2π)=4π39I=4π39

Answered by MJS last updated on 28/Apr/18

Ostrogradski′s Method:  ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx  Q_1 (x)=gcd(Q(x);Q′(x))  Q_2 (x)=((Q(x))/(Q_1 (x)))    P(x)=x^2   Q(x)=(x^2 +x+1)^2   Q′(x)=2(2x+1)(x^2 +x+1)  gcd(Q(x);Q′(x))=(x^2 +x+1)=Q_1 (x)=Q_2 (x)    to get P_1 (x)=k_1 x+k_2 , P_2 (x)=k_3 x+k_4   ((P(x))/(Q(x)))=(((P_1 (x))/(Q_1 (x))))^′ +((P_2 (x))/(Q_2 (x)))  (x^2 /((x^2 +x+1)^2 ))=((k_1 (x^2 +x+1)−(k_1 x+k_2 )(2x+1))/((x^2 +x+1)^2 ))+((k_3 x+k_4 )/(x^2 +x+1))            [multiplicate with (x^2 +x+1)^2 ]  x^2 =k_3 x^3 +(−k_1 +k_3 +k_4 )x^2 +(−2k_2 +k_3 +k_4 )x+(k_1 −k_2 +k_4 )  k_3 =0  −k_1 +k_3 +k_4 =1  −2k_2 +k_3 +k_4 =0  k_1 −k_2 +k_4 =0  k_1 =−(1/3); k_2 =(1/3); k_3 =0; k_4 =(2/3)  P_1 (x)=−((x−1)/3); P_2 (x)=(2/3)    ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx=  =−((x−1)/(3(x^2 +x+1)))+(2/3)∫(1/(x^2 +x+1))dx    (1/(x^2 +x+1))=(1/((x+(1/2))^2 +(3/4)))=(4/((2x+1)^2 +3))    (8/3)∫(1/((2x+1)^2 +3))dx=            u=((2x+1)/(√3)) → dx=((√3)/2)du            x=((u(√3)−1)/2)            (8/3)∫((√3)/(2(3u^2 +3)))du=((4(√3))/9)∫(1/(u^2 +1))du=            =((4(√3))/9)arctan u  =((4(√3))/9)arctan (((√3)/3)(2x+1))    ∫(x^2 /((x^2 +x+1)^2 ))dx=((4(√3))/9)arctan (((√3)/3)(2x+1))−((x−1)/(3(x^2 +x+1)))+C    ∫_(−∞) ^∞ (x^2 /((x^2 +x+1)^2 ))dx=((4(√3))/9)π

OstrogradskisMethod:P(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dxQ1(x)=gcd(Q(x);Q(x))Q2(x)=Q(x)Q1(x)P(x)=x2Q(x)=(x2+x+1)2Q(x)=2(2x+1)(x2+x+1)gcd(Q(x);Q(x))=(x2+x+1)=Q1(x)=Q2(x)togetP1(x)=k1x+k2,P2(x)=k3x+k4P(x)Q(x)=(P1(x)Q1(x))+P2(x)Q2(x)x2(x2+x+1)2=k1(x2+x+1)(k1x+k2)(2x+1)(x2+x+1)2+k3x+k4x2+x+1[multiplicatewith(x2+x+1)2]x2=k3x3+(k1+k3+k4)x2+(2k2+k3+k4)x+(k1k2+k4)k3=0k1+k3+k4=12k2+k3+k4=0k1k2+k4=0k1=13;k2=13;k3=0;k4=23P1(x)=x13;P2(x)=23P(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dx==x13(x2+x+1)+231x2+x+1dx1x2+x+1=1(x+12)2+34=4(2x+1)2+3831(2x+1)2+3dx=u=2x+13dx=32dux=u3128332(3u2+3)du=4391u2+1du==439arctanu=439arctan(33(2x+1))x2(x2+x+1)2dx=439arctan(33(2x+1))x13(x2+x+1)+Cx2(x2+x+1)2dx=439π

Commented by prof Abdo imad last updated on 23/Apr/18

thank you sir for this new method...

thankyousirforthisnewmethod...

Answered by sma3l2996 last updated on 23/Apr/18

I=∫_(−∞) ^(+∞) (x^2 /((1+x+x^2 )^2 ))dx=∫_(−∞) ^(+∞) ((x^2 +x+1−(x+1))/((x^2 +x+1)^2 ))dx  =∫_(−∞) ^(+∞) (1/(x^2 +x+1))dx−(1/2)∫_(−∞) ^(+∞) ((2x+2)/((x^2 +x+1)^2 ))dx  =∫_(−∞) ^(+∞) (dx/((x+(1/2))^2 +(3/4)))−(1/2)∫_(−∞) ^(+∞) ((2x+1)/((x^2 +x+1)^2 ))dx−(1/2)∫_(−∞) ^(+∞) (dx/(((x+(1/2))^2 +(3/4))^2 ))  =(4/3)∫_(−∞) ^(+∞) (dx/((((2x+1)/(√3)))^2 +1))+(1/2)[(1/(x^2 +x+1))]_(−∞) ^(+∞) −(8/9)∫_(−∞) ^(+∞) (dx/(((((2x+1)/(√3)))^2 +1)^2 ))  let  t=((2x+1)/(√3))⇒dx=((√3)/2)dt  so  I=((2(√3))/3)∫_(−∞) ^(+∞) (dt/(t^2 +1))−((4(√3))/9)∫_(−∞) ^(+∞) (dt/((t^2 +1)^2 ))  let  t=tanu⇒dt=(1+tan^2 u)du  I=((2(√3))/3)[tan^(−1) (t)]_(−∞) ^(+∞) −((4(√3))/9)∫_(−π/2) ^(π/2) (du/(1+tan^2 u))  =((2(√3))/3)π−((4(√3))/9)∫_(−π/2) ^(π/2) cos^2 (u)du  ∫_(−π/2) ^(π/2) cos^2 (u)du=(1/2)∫_(−π/2) ^(π/2) (cos(2u)+1)du=(1/2)[(1/2)sin(2x)+x]_(−π/2) ^(π/2)   =(π/2)  I=((2(√3))/3)π−((4(√3))/9)((π/2))=((4(√3))/3)π

I=+x2(1+x+x2)2dx=+x2+x+1(x+1)(x2+x+1)2dx=+1x2+x+1dx12+2x+2(x2+x+1)2dx=+dx(x+12)2+3412+2x+1(x2+x+1)2dx12+dx((x+12)2+34)2=43+dx(2x+13)2+1+12[1x2+x+1]+89+dx((2x+13)2+1)2lett=2x+13dx=32dtsoI=233+dtt2+1439+dt(t2+1)2lett=tanudt=(1+tan2u)duI=233[tan1(t)]+439π/2π/2du1+tan2u=233π439π/2π/2cos2(u)duπ/2π/2cos2(u)du=12π/2π/2(cos(2u)+1)du=12[12sin(2x)+x]π/2π/2=π2I=233π439(π2)=433π

Commented by MJS last updated on 23/Apr/18

just a minor mistake in the last line  I=((2(√3))/3)π−((4(√3))/9)((π/2))=((4(√3))/9)π

justaminormistakeinthelastlineI=233π439(π2)=439π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com