Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 33743 by prof Abdo imad last updated on 23/Apr/18

let p(x)=(1+x^2 )(1+x^4 )....(1+x^2^n  ) with n integr  1) find the roots of p(x)  2) factorize p(x) inside C[x]

$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)....\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right)\:{with}\:{n}\:{integr} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$

Commented by caravan msup abdo. last updated on 24/Apr/18

we have proved that p(x)=((1−x^2^(n+1)  )/(1−x^2 ))  if x^2 ≠1 so p(x)=0 ⇔ x^2^(n+1)  = e^(i2kπ)   if x=r e^(iθ)  we get r=1 and 2^(n+1) θ =2kπ  ⇒ θ_k  = ((2kπ)/2^(n+1) ) = ((kπ)/2^n ) and k∈[[1,2^(n+1) −1]]  the roots of p(x) are the complex  z_k   =e^(i((kπ)/(2^n    )))  with 1≤k≤ 2^(n+1)  −1  and k≠2^n   2) p(x) =Π_(k=1  and k≠2^n ) ^(2^(n+1) −1)   (z−e^(i((kπ)/2^n )) )

$${we}\:{have}\:{proved}\:{that}\:{p}\left({x}\right)=\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${if}\:{x}^{\mathrm{2}} \neq\mathrm{1}\:{so}\:{p}\left({x}\right)=\mathrm{0}\:\Leftrightarrow\:{x}^{\mathrm{2}^{{n}+\mathrm{1}} } =\:{e}^{{i}\mathrm{2}{k}\pi} \\ $$$${if}\:{x}={r}\:{e}^{{i}\theta} \:{we}\:{get}\:{r}=\mathrm{1}\:{and}\:\mathrm{2}^{{n}+\mathrm{1}} \theta\:=\mathrm{2}{k}\pi \\ $$$$\Rightarrow\:\theta_{{k}} \:=\:\frac{\mathrm{2}{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\:=\:\frac{{k}\pi}{\mathrm{2}^{{n}} }\:{and}\:{k}\in\left[\left[\mathrm{1},\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}\right]\right] \\ $$$${the}\:{roots}\:{of}\:{p}\left({x}\right)\:{are}\:{the}\:{complex} \\ $$$${z}_{{k}} \:\:={e}^{{i}\frac{{k}\pi}{\mathrm{2}^{{n}} \:\:\:}} \:{with}\:\mathrm{1}\leqslant{k}\leqslant\:\mathrm{2}^{{n}+\mathrm{1}} \:−\mathrm{1}\:\:{and}\:{k}\neq\mathrm{2}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{p}\left({x}\right)\:=\prod_{{k}=\mathrm{1}\:\:{and}\:{k}\neq\mathrm{2}^{{n}} } ^{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}} \:\:\left({z}−{e}^{{i}\frac{{k}\pi}{\mathrm{2}^{{n}} }} \right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com