Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33744 by prof Abdo imad last updated on 23/Apr/18

let  P_n (x)=(1+x^2 )(1+x^4 )....(1+x^2^n  )  calculate  lim_(n→+∞) ∫_0 ^x  P_n (t)dt  with  0<x<1 .

$${let}\:\:{P}_{{n}} \left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)....\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$ $${calculate}\:\:{lim}_{{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{{x}} \:{P}_{{n}} \left({t}\right){dt}\:\:{with}\:\:\mathrm{0}<{x}<\mathrm{1}\:. \\ $$

Commented byprof Abdo imad last updated on 25/Apr/18

we have proved that  P_n (t) = ((1−t^2^(n+1)  )/(1−t^2 )) ⇒  ∫_0 ^x   P_n (t)dt = ∫_0 ^x   ((1−t^2^(n+1)  )/(1−t^2 ))dt  = ∫_0 ^x    (dt/(1−t^2 ))  −∫_0 ^x    (t^2^(n+1)  /(1−t^2 )) dt  but  lim_(n→+∞)  ∫_0 ^x    (t^2^(n+1)  /(1−t^2 )) dt =0 because 0≤ ⇒t≤x<1  ⇒ lim_(n→+∞)   ∫_0 ^x   P_n (t)dt = ∫_0 ^x  (dt/(1−t^2 ))  =(1/2) ∫_0 ^x  ( (1/(1−t)) +(1/(1+t)))dt =[(1/2)ln∣((1+t)/(1−t))∣]_0 ^c   =(1/2) ln∣ ((1+x)/(1−x))∣ .

$${we}\:{have}\:{proved}\:{that}\:\:{P}_{{n}} \left({t}\right)\:=\:\frac{\mathrm{1}−{t}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{t}^{\mathrm{2}} }\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{{x}} \:\:{P}_{{n}} \left({t}\right){dt}\:=\:\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}−{t}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$ $$=\:\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} }\:\:−\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{t}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{t}^{\mathrm{2}} }\:{dt}\:\:{but} \\ $$ $${lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{t}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{t}^{\mathrm{2}} }\:{dt}\:=\mathrm{0}\:{because}\:\mathrm{0}\leqslant\:\Rightarrow{t}\leqslant{x}<\mathrm{1} \\ $$ $$\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:\:\int_{\mathrm{0}} ^{{x}} \:\:{P}_{{n}} \left({t}\right){dt}\:=\:\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{x}} \:\left(\:\frac{\mathrm{1}}{\mathrm{1}−{t}}\:+\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){dt}\:=\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\mid\right]_{\mathrm{0}} ^{{c}} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\mid\:\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\mid\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com