Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33759 by 33 last updated on 24/Apr/18

solve :    ∫_(−π/2) ^(π/2)   ((sin θ )/(√( R^2  + r^2  − 2rR cos θ))) dθ

solve:π/2π/2sinθR2+r22rRcosθdθ

Commented by MJS last updated on 24/Apr/18

∫((cos θ )/(√( R^2  + r^2  − 2rRcos θ)))dθ=            R^2 +r^2 =p            −2rR=q  =∫((cos θ)/(√(p+qcos θ)))dθ=            thanks to my friend Prof. H.E.            cos θ=(1/q)(p+qcos θ)−(p/q)  =∫(((1/q)(p+qcos θ)−(p/q))/(√(p+qcos θ)))dθ=  =(1/q)∫((p+qcos θ)/(√(p+qcos θ)))dθ−(p/q)∫(1/(√(p+qcos θ)))dθ=  =(1/q)∫(√(p+qcos θ))dθ−(p/q)∫(1/(√(p+qcos θ)))dθ=            sin^2  (θ/2)=((1−cos θ)/2)            cos θ=1−2sin^2  (θ/2)            p+qcos θ=p+q−2qsin^2  (θ/2)=            =(p+q)(1−((2q)/(p+q))sin^2  (θ/2))  =((√(p+q))/q)∫(√((1−((2q)/(p+q))sin^2  (θ/2))))dθ−((p(√(p+q)))/(q(p+q)))∫(1/(√((1−((2q)/(p+q))sin^2  (θ/2)))))dθ            u=(x/2) → dx=2du  =((2(√(p+q)))/q)∫(√((1−((2q)/(p+q))sin^2  u)))du−((2p(√(p+q)))/(q(p+q)))∫(1/(√((1−((2q)/(p+q))sin^2  u))))du=            the first is an elliptic integral of the            2^(nd)  kind, the second one of the 1^(st)  kind            the notation follows, but it′s beyond            my understanding...  =((2(√(p+q)))/q)E(u∣((2q)/(p+q)))−((2p(√(p+q)))/(q(p+q)))F(u∣((2q)/(p+q)))=            u=(x/2)  =((2(√(p+q)))/q)(E((x/2)∣((2q)/(p+q)))−(p/(p+q))F((x/2)∣((2q)/(p+q))))

cosθR2+r22rRcosθdθ=R2+r2=p2rR=q=cosθp+qcosθdθ=thankstomyfriendProf.H.E.cosθ=1q(p+qcosθ)pq=1q(p+qcosθ)pqp+qcosθdθ==1qp+qcosθp+qcosθdθpq1p+qcosθdθ==1qp+qcosθdθpq1p+qcosθdθ=sin2θ2=1cosθ2cosθ=12sin2θ2p+qcosθ=p+q2qsin2θ2==(p+q)(12qp+qsin2θ2)=p+qq(12qp+qsin2θ2)dθpp+qq(p+q)1(12qp+qsin2θ2)dθu=x2dx=2du=2p+qq(12qp+qsin2u)du2pp+qq(p+q)1(12qp+qsin2u)du=thefirstisanellipticintegralofthe2ndkind,thesecondoneofthe1stkindthenotationfollows,butitsbeyondmyunderstanding...=2p+qqE(u2qp+q)2pp+qq(p+q)F(u2qp+q)=u=x2=2p+qq(E(x22qp+q)pp+qF(x22qp+q))

Commented by prof Abdo imad last updated on 24/Apr/18

let put I =∫_(−(π/2)) ^(π/2)     ((cosθ)/(√(R^2  +r^2  −2rR cosθ)))dθ  we have R^2  +r^2  −2rR cosθ  =R^2 ( 1+((r/R))^2 −2(r/R) cosθ   let put λ =(r/R)  I =(1/R) ∫_(−(π/2)) ^(π/2)     ((cosθ)/(√(1+λ^2  −2λ cosθ)))dθ  tan((θ/2))=t ⇒ I =(1/R) ∫_(−1) ^1    (((1−t^2 )/(1+t^2 ))/(√(1+λ^2  −2λ((1−t^2 )/(1+t^2 ))))) ((2dt)/(1+t^2 ))  I = (2/R) ∫_(−1) ^1   ((1−t^2 )/((1+t^2 )^2 ))    (√(1+t^2 ))(dt/(√((1+λ^2 )(1+t^2 ) −2λ(1−t^2 ))))  = (2/R) ∫_(−1) ^1    ((1−t^2 )/((1+t^2 )^(3/2) ))  (dt/(√(1+t^2  +λ^2  +λ^2 t^2 −2λ +2λt^2 )))  = (2/R) ∫_(−1) ^1        (((1−t^2 )dt)/((1+t^2 )^(3/2)   (√(λ^2 −2λ +1  +(λ^2  +2λ+1)t^2 ))))  = (2/R) ∫_(−1) ^1       ((1−t^2 )/((1+t^2 )^(3/2) (√((λ−1)^2  +(λ+1)^2 t^2 ))))dt  ch.(λ+1)t=(λ−1) u give  I = (2/R) ∫_(−1) ^1        ((1 −(((λ−1)/(λ+1)) u)^2 )/((1+(((λ−1)/(λ+1))u)^2 )^(3/2) ))   (((λ−1)/(λ+1))/(∣λ−1∣(√(1+u^2 ))))du  after we use the ch.u=tanθ  or u =shθ...be  continued...

letputI=π2π2cosθR2+r22rRcosθdθwehaveR2+r22rRcosθ=R2(1+(rR)22rRcosθletputλ=rRI=1Rπ2π2cosθ1+λ22λcosθdθtan(θ2)=tI=1R111t21+t21+λ22λ1t21+t22dt1+t2I=2R111t2(1+t2)21+t2dt(1+λ2)(1+t2)2λ(1t2)=2R111t2(1+t2)32dt1+t2+λ2+λ2t22λ+2λt2=2R11(1t2)dt(1+t2)32λ22λ+1+(λ2+2λ+1)t2=2R111t2(1+t2)32(λ1)2+(λ+1)2t2dtch.(λ+1)t=(λ1)ugiveI=2R111(λ1λ+1u)2(1+(λ1λ+1u)2)32λ1λ+1λ11+u2duafterweusethech.u=tanθoru=shθ...becontinued...

Commented by 33 last updated on 24/Apr/18

To sir MJS , sir we cannot  consider a, b and c   as   constants as they are   dependent on cos θ .  and you do not know  a b c   as a function of α   and vice versa.

TosirMJS,sirwecannotconsidera,bandcasconstantsastheyaredependentoncosθ.andyoudonotknowabcasafunctionofαandviceversa.

Commented by MJS last updated on 24/Apr/18

you′re right

youreright

Commented by MJS last updated on 24/Apr/18

...this leads to an elliptic integral and it  might be impossible to exactly solve it

...thisleadstoanellipticintegralanditmightbeimpossibletoexactlysolveit

Commented by 33 last updated on 24/Apr/18

what if there were sine   instead of cos in numerator?

whatifthereweresineinsteadofcosinnumerator?

Commented by MJS last updated on 24/Apr/18

then it′s easy  ∫((cos θ)/(√(R^2 +r^2 −2Rrsin θ)))dθ=            u=R^2 +r^2 −2Rrsin θ            dx=−(1/(2rRcos θ))  −(1/(2rR))∫(1/(√u))du=−(1/(2rR))×2(√u)+C=−((√u)/(rR))+C=  =−((√(R^2 +r^2 −2Rrsin θ))/(rR))+C  ∫_(−(π/2)) ^(π/2) ((cos θ)/(√(R^2 +r^2 −2Rrsin θ)))dθ=  =(((√(R^2 +r^2 +2rR))−(√(R^2 +r^2 −2rR)))/(rR))=  =(((√((R+r)^2 ))−(√((R−r)^2 )))/(rR))=  =((∣R+r∣−∣R−r∣)/(rR))=            if R>r ∧ R>0 ∧ r>0  =((R+r−(R−r))/(rR))=(2/R)

thenitseasycosθR2+r22Rrsinθdθ=u=R2+r22Rrsinθdx=12rRcosθ12rR1udu=12rR×2u+C=urR+C==R2+r22RrsinθrR+Cπ2π2cosθR2+r22Rrsinθdθ==R2+r2+2rRR2+r22rRrR==(R+r)2(Rr)2rR==R+rRrrR=ifR>rR>0r>0=R+r(Rr)rR=2R

Commented by MJS last updated on 24/Apr/18

sorry, I misread... but it′s the same way:  ∫((sin θ)/(√(R^2 +r^2 −2Rrcos θ)))dθ=  =((√(R^2 +r^2 −2Rrcos θ))/(rR))+C  ∫_(−(π/2)) ^(π/2) ((sin θ)/(√(R^2 +r^2 −2Rrcos θ)))dθ=0

sorry,Imisread...butitsthesameway:sinθR2+r22Rrcosθdθ==R2+r22RrcosθrR+Cπ2π2sinθR2+r22Rrcosθdθ=0

Commented by prof Abdo imad last updated on 25/Apr/18

something went wrong becsuse θ→((sinθ)/(√(R^2  +r^2  −2rR cosθ)))  is odd  ⇒∫_(−(π/2)) ^(π/2)  (...)dθ =0

somethingwentwrongbecsuseθsinθR2+r22rRcosθisoddπ2π2(...)dθ=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com