Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33818 by rahul 19 last updated on 25/Apr/18

Let f:R → [ 1, ∞) be defined as   f(x) = log_(10)  ((√(3x^2 −4x+k+1)) +10 ).  If f(x) is surjective , then find  the value of k ?

$$\boldsymbol{{L}}{et}\:{f}:\boldsymbol{{R}}\:\rightarrow\:\left[\:\mathrm{1},\:\infty\right)\:{be}\:{defined}\:{as}\: \\ $$$${f}\left({x}\right)\:=\:\mathrm{log}_{\mathrm{10}} \:\left(\sqrt{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\boldsymbol{{k}}+\mathrm{1}}\:+\mathrm{10}\:\right). \\ $$$$\boldsymbol{{I}}{f}\:{f}\left({x}\right)\:{is}\:\boldsymbol{{surjective}}\:,\:{then}\:{find} \\ $$$${the}\:{value}\:{of}\:\boldsymbol{{k}}\:? \\ $$

Answered by MJS last updated on 26/Apr/18

this one′s easier  (√(3x^2 −4x+k+1)) must be a real number  and must have exactly one zero  (2 distinct zeros ⇒ f(x) not defined for  some x∈R; no zeros ⇒ min(f(x))>1)  3x^2 −4x+k+1=0  x^2 −(4/3)x+((k+1)/3)=0  x=(2/3)±((√(1−3k))/3)  1−3k=0 ⇒ k=(1/3)

$$\mathrm{this}\:\mathrm{one}'\mathrm{s}\:\mathrm{easier} \\ $$$$\sqrt{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\boldsymbol{{k}}+\mathrm{1}}\:\mathrm{must}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number} \\ $$$$\mathrm{and}\:\mathrm{must}\:\mathrm{have}\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{zero} \\ $$$$\left(\mathrm{2}\:\mathrm{distinct}\:\mathrm{zeros}\:\Rightarrow\:{f}\left({x}\right)\:\mathrm{not}\:\mathrm{defined}\:\mathrm{for}\right. \\ $$$$\left.\mathrm{some}\:{x}\in\mathbb{R};\:\mathrm{no}\:\mathrm{zeros}\:\Rightarrow\:{min}\left({f}\left({x}\right)\right)>\mathrm{1}\right) \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+{k}+\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{3}}{x}+\frac{{k}+\mathrm{1}}{\mathrm{3}}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{2}}{\mathrm{3}}\pm\frac{\sqrt{\mathrm{1}−\mathrm{3}{k}}}{\mathrm{3}} \\ $$$$\mathrm{1}−\mathrm{3}{k}=\mathrm{0}\:\Rightarrow\:{k}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Commented by rahul 19 last updated on 28/Apr/18

pls  explain one more time.  If f(x) has exactly one zero then  it will not be defined for that x i.e  will not be sujective ..... ??  for eg: if it becomes (x−2)   then f(x) is not defined at x=2 ?

$${pls}\:\:{explain}\:{one}\:{more}\:{time}. \\ $$$${If}\:{f}\left({x}\right)\:{has}\:{exactly}\:{one}\:{zero}\:{then} \\ $$$${it}\:{will}\:{not}\:{be}\:{defined}\:{for}\:{that}\:{x}\:{i}.{e} \\ $$$${will}\:{not}\:{be}\:{sujective}\:.....\:?? \\ $$$${for}\:{eg}:\:{if}\:{it}\:{becomes}\:\left({x}−\mathrm{2}\right)\: \\ $$$${then}\:{f}\left({x}\right)\:{is}\:{not}\:{defined}\:{at}\:{x}=\mathrm{2}\:? \\ $$

Commented by MJS last updated on 28/Apr/18

not f(x), I only talk about the root  f(x)=log_(10)  ((√(g(x)))+10)  g(x) has  { ((no zero ⇒ (√(g(x)))>0 ∧ f(x)>1 ∀x∈R ⇒)),((⇒ ∃y∈[1; ∞[: y≠f(x)∀x∈R)),((1 zero p ⇒ (√(g(p)))=0 ⇒ f(p)=1 ⇒)),((⇒ ∀y∈[1; ∞[: ∃x∈R: y=f(x) ⇒ f(x) is surjective)),((2 zeros p, q ⇒ (√(g(x)))∉R ∀x∈]p; q[ ⇒)),((⇒ D=R\x≠R ∀x∈]p; q[)) :}

$$\mathrm{not}\:{f}\left({x}\right),\:\mathrm{I}\:\mathrm{only}\:\mathrm{talk}\:\mathrm{about}\:\mathrm{the}\:\mathrm{root} \\ $$$${f}\left({x}\right)=\mathrm{log}_{\mathrm{10}} \:\left(\sqrt{{g}\left({x}\right)}+\mathrm{10}\right) \\ $$$${g}\left({x}\right)\:\mathrm{has}\:\begin{cases}{\mathrm{no}\:\mathrm{zero}\:\Rightarrow\:\sqrt{{g}\left({x}\right)}>\mathrm{0}\:\wedge\:{f}\left({x}\right)>\mathrm{1}\:\forall{x}\in\mathbb{R}\:\Rightarrow}\\{\Rightarrow\:\exists{y}\in\left[\mathrm{1};\:\infty\left[:\:{y}\neq{f}\left({x}\right)\forall{x}\in\mathbb{R}\right.\right.}\\{\mathrm{1}\:\mathrm{zero}\:{p}\:\Rightarrow\:\sqrt{{g}\left({p}\right)}=\mathrm{0}\:\Rightarrow\:{f}\left({p}\right)=\mathrm{1}\:\Rightarrow}\\{\Rightarrow\:\forall{y}\in\left[\mathrm{1};\:\infty\left[:\:\exists{x}\in\mathbb{R}:\:{y}={f}\left({x}\right)\:\Rightarrow\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{surjective}\right.\right.}\\{\left.\mathrm{2}\:\mathrm{zeros}\:{p},\:{q}\:\Rightarrow\:\sqrt{{g}\left({x}\right)}\notin\mathbb{R}\:\forall{x}\in\right]{p};\:{q}\left[\:\Rightarrow\right.}\\{\left.\Rightarrow\:\mathbb{D}=\mathbb{R}\backslash{x}\neq\mathbb{R}\:\forall{x}\in\right]{p};\:{q}\left[\right.}\end{cases} \\ $$

Commented by rahul 19 last updated on 29/Apr/18

Thank you sir.

$$\mathscr{T}{hank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com