All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33823 by 33 last updated on 25/Apr/18
solve: I=∫π0(r−Rcosθ)sinθ(R2+r2−2Rrcosθ)3/2dθ forr<R andr>Rrespectively.
Answered by MJS last updated on 26/Apr/18
∫u′v=uv−∫uv′ u′=sinθ(r2+R2−2rRcosθ)32;v=r−Rcosθ u=−1rR(r2+R2−2rRcosθ)12;v′=Rsinθ [∫sinθ(r2+R2−2rRcosθ)32dθ=[t=r2+R2−2rRcosθ→dx=dt2rRsinθ]=12rR∫1t32dt=−1rRt12] uv=−r−RcosθrR(r2+R2−2rRcosθ)12 −∫uv′=∫sinθr(r2+R2−2rRcosθ)12= [withthesamesubstitutionasabove] =(r2+R2−2rRcosθ)12r2R ∫(r−Rcosθ)sinθ(r2+R2−2rRcosθ)32= =−r−RcosθrR(r2+R2−2rRcosθ)12+(r2+R2−2rRcosθ)12r2R+C= =R−rcosθr2r2+R2−2rRcosθ+C=F(θ) F(π)−F(0)=R+rr2∣R+r∣−R−rr2∣R−r∣ r,R>0 r<R⇒F(π)−F(0)=0 r>R⇒F(π)−F(0)=2r2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com