Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33835 by prof Abdo imad last updated on 25/Apr/18

find the value of   ∫_(−∞) ^(+∞)     ((cos(πx))/((x^2  +1+i)^2 )) dx

findthevalueof+cos(πx)(x2+1+i)2dx

Commented by prof Abdo imad last updated on 29/Apr/18

let consider the complex function  ϕ(z)= (e^(iπz) /((z^2  +1+i)^2 ))  we have z^2 +1+i =z^2  −(−1−i)  −1−i =(√2) (((−1)/(√2)) −(i/(√2))) =(√2)(cos(π+(π/4)) +i sin(π+(π/4)))  =(√2) e^(i((5π)/4)) ⇒ z^2 −(−1−i) =z^2   −(√2) e^(i((5π)/4))   =(z −^4 ((√2) e^(i((5π)/8)) )^2   so the poles are 2^(1/4)  e^(i((5π)/8)) =z_0   and −2^(1/4)  e^(i((5π)/8)) =z_1    (doubles)  I = ∫_(−∞) ^(+∞)   ((cos(πx))/((x^2 +1+i)^2 ))dx =Re( ∫_(−∞) ^(+∞)  (e^(iπx) /((x^2  +1+i)^2 ))dx)  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,z_0 )  Res(ϕ,z_0 )=lim_(z→z_0 )  (1/((2−1)!)) ((z−z_0 )^2 ϕ(z))^′   =lim_(z→z_0   )    ( (e^(iπz) /((z −z_1 )^2 )))^′   =lim_(z→z_0 )   ((iπ e^(iπz) (z−z_1 )^2  −2(z−z_1 )e^(iπz) )/((z−z_1 )^4 ))  =lim_(z→z_0 )   ((iπ e^(iπz) (z−z_1 )  −2 e^(iπz) )/((x−z_1 )^3 ))  = ((iπ e^(iπz_0 ) (z_0  −z_1 ) −2 e^(iπz_0 ) )/((z_0  −z_1 )3))  ∫_(−∞) ^(+∞)  ϕ(z)dz =(−2π (z_0  −z_1  −2)(cos(πz_0 ) +isin(πz_0 ))(z−z_0 )^(−3)   I =Re ( ∫_(−∞) ^(+∞)  ϕ(z)dz) .

letconsiderthecomplexfunctionφ(z)=eiπz(z2+1+i)2wehavez2+1+i=z2(1i)1i=2(12i2)=2(cos(π+π4)+isin(π+π4))=2ei5π4z2(1i)=z22ei5π4=(z4(2ei5π8)2sothepolesare214ei5π8=z0and214ei5π8=z1(doubles)I=+cos(πx)(x2+1+i)2dx=Re(+eiπx(x2+1+i)2dx)+φ(z)dz=2iπRes(φ,z0)Res(φ,z0)=limzz01(21)!((zz0)2φ(z))=limzz0(eiπz(zz1)2)=limzz0iπeiπz(zz1)22(zz1)eiπz(zz1)4=limzz0iπeiπz(zz1)2eiπz(xz1)3=iπeiπz0(z0z1)2eiπz0(z0z1)3+φ(z)dz=(2π(z0z12)(cos(πz0)+isin(πz0))(zz0)3I=Re(+φ(z)dz).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com