All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33835 by prof Abdo imad last updated on 25/Apr/18
findthevalueof∫−∞+∞cos(πx)(x2+1+i)2dx
Commented by prof Abdo imad last updated on 29/Apr/18
letconsiderthecomplexfunctionφ(z)=eiπz(z2+1+i)2wehavez2+1+i=z2−(−1−i)−1−i=2(−12−i2)=2(cos(π+π4)+isin(π+π4))=2ei5π4⇒z2−(−1−i)=z2−2ei5π4=(z−4(2ei5π8)2sothepolesare214ei5π8=z0and−214ei5π8=z1(doubles)I=∫−∞+∞cos(πx)(x2+1+i)2dx=Re(∫−∞+∞eiπx(x2+1+i)2dx)∫−∞+∞φ(z)dz=2iπRes(φ,z0)Res(φ,z0)=limz→z01(2−1)!((z−z0)2φ(z))′=limz→z0(eiπz(z−z1)2)′=limz→z0iπeiπz(z−z1)2−2(z−z1)eiπz(z−z1)4=limz→z0iπeiπz(z−z1)−2eiπz(x−z1)3=iπeiπz0(z0−z1)−2eiπz0(z0−z1)3∫−∞+∞φ(z)dz=(−2π(z0−z1−2)(cos(πz0)+isin(πz0))(z−z0)−3I=Re(∫−∞+∞φ(z)dz).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com