Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33847 by prof Abdo imad last updated on 26/Apr/18

 let give a sequence of real numbets positif  (a_i )_(1≤i≤n)   1) prove that (Σ_(i=1) ^n  a_i )^2 ≤ n Σ_(i=1) ^n  a_i ^2   2)let put H_n =Σ_(k=1) ^n  (1/k)  and w_n = (H_n ^2 /n)  prove that the sequence w_n  is convergent .

$$\:{let}\:{give}\:{a}\:{sequence}\:{of}\:{real}\:{numbets}\:{positif} \\ $$$$\left({a}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\left(\sum_{{i}=\mathrm{1}} ^{{n}} \:{a}_{{i}} \right)^{\mathrm{2}} \leqslant\:{n}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:{a}_{{i}} ^{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){let}\:{put}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:\:{and}\:{w}_{{n}} =\:\frac{{H}_{{n}} ^{\mathrm{2}} }{{n}} \\ $$$${prove}\:{that}\:{the}\:{sequence}\:{w}_{{n}} \:{is}\:{convergent}\:. \\ $$

Commented by prof Abdo imad last updated on 27/Apr/18

for all sequences of reals numbers positifs  (a_i )_(1≤i≤n) and (b_i )_(1≤i≤n)  we have  Σ_(i=1) ^n  a_i b_i  ≤ (Σ_(i=1) ^n a_i ^2 )^(1/2) (Σ_(i=1) ^n b_i ^2 )^(1/2)  (holder inequality)  let take b_i =1 ∀i∈[[1,n]] ⇒Σ_(i=1) ^n a_i  ≤(√n) (Σ_(i=1) ^n a_i ^2 )^(1/2) ⇒  (Σ_(i=1) ^n a_i )^2  ≤n(Σ_(i=1) ^n a_i ^2 )  2)let take  a_i = (1/i)  ∀i∈[1,n] ⇒(Σ_(i=1) ^n  (1/i))^2 ≤nΣ_(i=1) ^n (1/i^2 )  ⇒ H_n ^2  ≤ n Σ_(i=1) ^n  (1/i^2 ) ⇒ (H_n ^2 /n) ≤ Σ_(i=1) ^n  (1/i^2 ) ⇒  w_n  ≤ Σ_(i=1) ^n  (1/i^2 )  Rieman serie convergent so  (w_n ) is convergent.

$${for}\:{all}\:{sequences}\:{of}\:{reals}\:{numbers}\:{positifs} \\ $$$$\left({a}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} {and}\:\left({b}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \:{we}\:{have} \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}} \:{a}_{{i}} {b}_{{i}} \:\leqslant\:\left(\sum_{{i}=\mathrm{1}} ^{{n}} {a}_{{i}} ^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\sum_{{i}=\mathrm{1}} ^{{n}} {b}_{{i}} ^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\left({holder}\:{inequality}\right) \\ $$$${let}\:{take}\:{b}_{{i}} =\mathrm{1}\:\forall{i}\in\left[\left[\mathrm{1},{n}\right]\right]\:\Rightarrow\sum_{{i}=\mathrm{1}} ^{{n}} {a}_{{i}} \:\leqslant\sqrt{{n}}\:\left(\sum_{{i}=\mathrm{1}} ^{{n}} {a}_{{i}} ^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \Rightarrow \\ $$$$\left(\sum_{{i}=\mathrm{1}} ^{{n}} {a}_{{i}} \right)^{\mathrm{2}} \:\leqslant{n}\left(\sum_{{i}=\mathrm{1}} ^{{n}} {a}_{{i}} ^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{2}\right){let}\:{take}\:\:{a}_{{i}} =\:\frac{\mathrm{1}}{{i}}\:\:\forall{i}\in\left[\mathrm{1},{n}\right]\:\Rightarrow\left(\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{i}}\right)^{\mathrm{2}} \leqslant{n}\sum_{{i}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{i}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{H}_{{n}} ^{\mathrm{2}} \:\leqslant\:{n}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{i}^{\mathrm{2}} }\:\Rightarrow\:\frac{{H}_{{n}} ^{\mathrm{2}} }{{n}}\:\leqslant\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{i}^{\mathrm{2}} }\:\Rightarrow \\ $$$${w}_{{n}} \:\leqslant\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{i}^{\mathrm{2}} }\:\:{Rieman}\:{serie}\:{convergent}\:{so} \\ $$$$\left({w}_{{n}} \right)\:{is}\:{convergent}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com