Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 33867 by Joel578 last updated on 26/Apr/18

Given A(t) is an area bounded between   y = x^2  + tx and x−axis,  0 < t < 2  Find the propability we choose t  so (1/(48)) ≤ A(t) ≤ (1/(16))

GivenA(t)isanareaboundedbetween y=x2+txandxaxis,0<t<2 Findthepropabilitywechooset so148A(t)116

Answered by MJS last updated on 26/Apr/18

x^2 +tx=0  x(x+t)=0  x_1 =0  x_2 =−t  ∣∫_(−t) ^0 (x^2 +tx)dx∣=∣[(x^3 /3)+((tx^2 )/2)]_(−t) ^0 ∣=∣(t^3 /3)−(t^3 /2)∣=(t^3 /6)  (1/(48))≤(t^3 /6)≤(1/(16))  (1/8)≤t^3 ≤(3/8)  (1/2)≤t≤((3)^(1/3) /2)  ((((3)^(1/3) /2)−(1/2))/2)=(((3)^(1/3) −1)/4)≈.1106 ⇒ 11.06%

x2+tx=0 x(x+t)=0 x1=0 x2=t Missing \left or extra \right 148t36116 18t338 12t332 332122=3314.110611.06%

Commented byJoel578 last updated on 26/Apr/18

thank you very much

thankyouverymuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com